

VOL. 31 ISS. 12

PUBLISHED EVERY OTHER WEEK BY THE VIRGINIA CODE COMMISSION

FEBRUARY 9, 2015

TABLE OF CONTENTS

Register Information Page	971
Publication Schedule and Deadlines	972
Petitions for Rulemaking	973
Regulations	974
2VAC5-490. Regulations Governing Grade "A" Milk (Final)	974
4VAC20-450. Pertaining to the Taking of Bluefish (Emergency)	
4VAC20-950. Pertaining to Black Sea Bass (Final)	1011
9VAC5-20. General Provisions (Rev. G14) (Final)	1012
9VAC5-50. New and Modified Stationary Sources (Rev. H14) (Final)	
9VAC5-60. Hazardous Air Pollutant Sources (Rev. H14) (Final)	
9VAC25-720. Water Quality Management Planning Regulation (Final)	
10VAC5-120. Money Order Sellers and Money Transmitters (Final)	
17VAC10-30. Historic Rehabilitation Tax Credit (Proposed)	
18VAC15-30. Virginia Lead-Based Paint Activities Regulations (Proposed)	
General Notices/Errata	1165

Virginia Code Commission

http://register.dls.virginia.gov

VIRGINIA REGISTER INFORMATION PAGE

THE VIRGINIA REGISTER OF REGULATIONS is an official state publication issued every other week throughout the year. Indexes are published quarterly, and are cumulative for the year. The *Virginia Register* has several functions. The new and amended sections of regulations, both as proposed and as finally adopted, are required by law to be published in the *Virginia Register*. In addition, the *Virginia Register* is a source of other information about state government, including petitions for rulemaking, emergency regulations, executive orders issued by the Governor, and notices of public hearings on regulations.

ADOPTION, AMENDMENT, AND REPEAL OF REGULATIONS

An agency wishing to adopt, amend, or repeal regulations must first publish in the *Virginia Register* a notice of intended regulatory action; a basis, purpose, substance and issues statement; an economic impact analysis prepared by the Department of Planning and Budget; the agency's response to the economic impact analysis; a summary; a notice giving the public an opportunity to comment on the proposal; and the text of the proposed regulation.

Following publication of the proposal in the Virginia Register, the promulgating agency receives public comments for a minimum of 60 days. The Governor reviews the proposed regulation to determine if it is necessary to protect the public health, safety and welfare, and if it is clearly written and easily understandable. If the Governor chooses to comment on the proposed regulation, his comments must be transmitted to the agency and the Registrar no later than 15 days following the completion of the 60-day public comment period. The Governor's comments, if any, will be published in the *Virginia Register*. Not less than 15 days following the completion of the 60-day public comment period, the agency may adopt the proposed regulation.

The Joint Commission on Administrative Rules (JCAR) or the appropriate standing committee of each house of the General Assembly may meet during the promulgation or final adoption process and file an objection with the Registrar and the promulgating agency. The objection will be published in the *Virginia Register*. Within 21 days after receipt by the agency of a legislative objection, the agency shall file a response with the Registrar, the objecting legislative body, and the Governor.

When final action is taken, the agency again publishes the text of the regulation as adopted, highlighting all changes made to the proposed regulation and explaining any substantial changes made since publication of the proposal. A 30-day final adoption period begins upon final publication in the *Virginia Register*.

The Governor may review the final regulation during this time and, if he objects, forward his objection to the Registrar and the agency. In addition to or in lieu of filing a formal objection, the Governor may suspend the effective date of a portion or all of a regulation until the end of the next regular General Assembly session by issuing a directive signed by a majority of the members of the appropriate legislative body and the Governor. The Governor's objection or suspension of the regulation, or both, will be published in the *Virginia Register*. If the Governor finds that changes made to the proposed regulation have substantial impact, he may require the agency to provide an additional 30-day public comment period on the changes. Notice of the additional public comment period required by the Governor will be published in the *Virginia Register*.

The agency shall suspend the regulatory process for 30 days when it receives requests from 25 or more individuals to solicit additional public comment, unless the agency determines that the changes have minor or inconsequential impact.

A regulation becomes effective at the conclusion of the 30-day final adoption period, or at any other later date specified by the promulgating agency, unless (i) a legislative objection has been filed, in which event the regulation, unless withdrawn, becomes effective on the date specified, which shall be after the expiration of the 21-day objection period; (ii) the Governor exercises his authority to require the agency to provide for additional public comment, in which event the regulation,

unless withdrawn, becomes effective on the date specified, which shall be after the expiration of the period for which the Governor has provided for additional public comment; (iii) the Governor and the General Assembly exercise their authority to suspend the effective date of a regulation until the end of the next regular legislative session; or (iv) the agency suspends the regulatory process, in which event the regulation, unless withdrawn, becomes effective on the date specified, which shall be after the expiration of the 30-day public comment period and no earlier than 15 days from publication of the readopted action.

A regulatory action may be withdrawn by the promulgating agency at any time before the regulation becomes final.

FAST-TRACK RULEMAKING PROCESS

Section 2.2-4012.1 of the Code of Virginia provides an exemption from certain provisions of the Administrative Process Act for agency regulations deemed by the Governor to be noncontroversial. To use this process, Governor's concurrence is required and advance notice must be provided to certain legislative committees. Fast-track regulations will become effective on the date noted in the regulatory action if no objections to using the process are filed in accordance with § 2.2-4012.1.

EMERGENCY REGULATIONS

Pursuant to § 2.2-4011 of the Code of Virginia, an agency, upon consultation with the Attorney General, and at the discretion of the Governor, may adopt emergency regulations that are necessitated by an emergency situation. An agency may also adopt an emergency regulation when Virginia statutory law or the appropriation act or federal law or federal regulation requires that a regulation be effective in 280 days or less from its enactment. The emergency regulation becomes operative upon its adoption and filing with the Registrar of Regulations, unless a later date is specified. Emergency regulations are limited to no more than 18 months in duration; however, may be extended for six months under certain circumstances as provided for in § 2.2-4011 D. Emergency regulations are published as soon as possible in the Register. During the time the emergency status is in effect, the agency may proceed with the adoption of permanent regulations through the usual procedures. To begin promulgating the replacement regulation, the agency must (i) file the Notice of Intended Regulatory Action with the Registrar within 60 days of the effective date of the emergency regulation and (ii) file the proposed regulation with the Registrar within 180 days of the effective date of the emergency regulation. If the agency chooses not to adopt the regulations, the emergency status ends when the prescribed time limit expires.

STATEMENT

The foregoing constitutes a generalized statement of the procedures to be followed. For specific statutory language, it is suggested that Article 2 (§ 2.2-4006 et seq.) of Chapter 40 of Title 2.2 of the Code of Virginia be examined carefully.

CITATION TO THE VIRGINIA REGISTER

The *Virginia Register* is cited by volume, issue, page number, and date. **29:5 VA.R. 1075-1192 November 5, 2012,** refers to Volume 29, Issue 5, pages 1075 through 1192 of the *Virginia Register* issued on November 5, 2012.

The Virginia Register of Regulations is published pursuant to Article 6 (§ 2.2-4031 et seq.) of Chapter 40 of Title 2.2 of the Code of Virginia.

Members of the Virginia Code Commission: John S. Edwards, Chair; James M. LeMunyon, Vice Chair, Gregory D. Habeeb; Ryan T. McDougle; Pamela S. Baskervill; Robert L. Calhoun; Carlos L. Hopkins; E.M. Miller, Jr.; Thomas M. Moncure, Jr.; Christopher R. Nolen; Timothy Oksman; Charles S. Sharp; Robert L. Tavenner.

<u>Staff of the Virginia Register:</u> **Jane D. Chaffin,** Registrar of Regulations; **Karen Perrine,** Assistant Registrar; **Anne Bloomsburg,** Regulations Analyst; **Rhonda Dyer,** Publications Assistant; **Terri Edwards,** Operations Staff Assistant.

PUBLICATION SCHEDULE AND DEADLINES

This schedule is available on the *Register's* Internet home page (http://register.dls.virginia.gov).

February 2015 through March 2016

Volume: Issue	Material Submitted By Noon*	Will Be Published On
31:12	January 21, 2015	February 9, 2015
31:13	February 4, 2015	February 23, 2015
31:14	February 18, 2015	March 9, 2015
31:15	March 4, 2015	March 23, 2015
31:16	March 18, 2015	April 6, 2015
31:17	April 1, 2015	April 20, 2015
31:18	April 15, 2015	May 4, 2015
31:19	April 29, 2015	May 18, 2015
31:20	May 13, 2015	June 1, 2015
31:21	May 27, 2015	June 15, 2015
31:22	June 10, 2015	June 29, 2015
31:23	June 24, 2015	July 13, 2015
31:24	July 8, 2015	July 27, 2015
31:25	July 22, 2015	August 10, 2015
31:26	August 5, 2015	August 24, 2015
32:1	August 19, 2015	September 7, 2015
32:2	September 2, 2015	September 21, 2015
32:3	September 16, 2015	October 5, 2015
32:4	September 30, 2015	October 19, 2015
32:5	October 14, 2015	November 2, 2015
32:6	October 28, 2015	November 16, 2015
32:7	November 11, 2015	November 30, 2015
32:8	November 24, 2015 (Tuesday)	December 14, 2015
32:9	December 9, 2015	December 28, 2015
32:10	December 21, 2015 (Monday)	January 11, 2016
32:11	January 6, 2016	January 25, 2016
32:12	January 20, 2016	February 8, 2016
32:13	February 3, 2016	February 22, 2016
32:14	February 17, 2016	March 7, 2016

^{*}Filing deadlines are Wednesdays unless otherwise specified.

PETITIONS FOR RULEMAKING

TITLE 18. PROFESSIONAL AND OCCUPATIONAL LICENSING

BOARD OF PSYCHOLOGY

Initial Agency Notice

<u>Title of Regulation:</u> 18VAC125-20. Regulations Governing the Practice of Psychology.

Statutory Authority: § 54.1-2400 of the Code of Virginia.

Name of Petitioner: Gentry Nalley.

<u>Nature of Petitioner's Request:</u> Amend section on standards of practice to require that a psychologist report to the court and counsel recantations of abuse allegations by a minor.

Agency Plan for Disposition of Request: In accordance with Virginia law, the petition has been filed with the Virginia Register of Regulations for publication on February 9, 2015, with a request for comment to be received until March 6, 2015. The petition will also be posted for comment on the Virginia Regulatory Townhall website at http://www.townhall.virginia.gov. At the next meeting after the comment period, which is scheduled for May 19, 2015, the board will consider the petition and any comment received to decide whether or not to initiate the rulemaking process.

Public Comment Deadline: March 6, 2015.

Agency Contact: Elaine J. Yeatts, Agency Regulatory Coordinator, Department of Health Professions, 9960 Mayland Drive, Suite 300, Richmond, VA 23233, telephone (804) 367-4688, or email elaine.yeatts@dhp.virginia.gov.

VA.R. Doc. No. R15-19; Filed January 19, 2015, 2:59 p.m.

REGULATIONS

For information concerning the different types of regulations, see the Information Page.

Symbol Key

Roman type indicates existing text of regulations. Underscored language indicates proposed new text.

Language that has been stricken indicates proposed text for deletion. Brackets are used in final regulations to indicate changes from the proposed regulation.

TITLE 2. AGRICULTURE

BOARD OF AGRICULTURE AND CONSUMER SERVICES

Final Regulation

REGISTRAR'S NOTICE: The Board of Agriculture and Consumer Services is claiming an exemption from the Administrative Process Act in accordance with § 2.2-4002 A 13 of the Code of Virginia, which excludes the board when promulgating regulations pursuant to § 3.2-5206 of the Code of Virginia.

<u>Title of Regulation:</u> 2VAC5-490. Regulations Governing Grade "A" Milk (amending 2VAC5-490-10 through 2VAC5-490-30, 2VAC5-490-31, 2VAC5-490-33 through 2VAC5-490-37, 2VAC5-490-39, 2VAC5-490-39.3, 2VAC5-490-40 through 2VAC5-490-73, 2VAC5-490-90, 2VAC5-490-100, 2VAC5-490-131, 2VAC5-490-132, 2VAC5-490-136, 2VAC5-490-138, 2VAC5-490-140).

Statutory Authority: § 3.2-5206 of the Code of Virginia.

Effective Date: January 21, 2015.

Agency Contact: Carolyn Peterson, Program Supervisor, Department of Agriculture and Consumer Services, P.O. Box 1163, Richmond, VA 23218, telephone (804) 786-1452, FAX (804) 371-7792, TTY (800) 828-1120, or email carolyn.peterson@vdacs.virginia.gov.

Summary:

The amendments update the regulations to reflect changes in the federal Grade "A" Pasteurized Milk Ordinance (PMO), 2013 Revision, and make other changes. The amendments include:

- 1. Add definitions to address new developments in the industry, including definitions for "aseptic processing and packaging systems," "clean in place," "contaminated milk," and "food allergen."
- 2. Eliminate the requirement for official cryoscope (added water) testing in milk since this testing is already performed by the dairy cooperatives as well as by fluid milk processing plants and eliminate regulatory action requirements (warnings, suspension, and reinstatement) for volatile cryoscope results because cryoscope testing will no longer be required;
- 3. Add minimum frequencies for inspections of dairy farms, milk tank trucks, and milk hauler/samplers;
- 4. Add a provision requiring that all tests for pasteurized milk and milk products requiring sampling and testing be

performed only when test methods are available that are validated by the Food and Drug Administration and accepted by the National Conference on Interstate Milk Shipments;

- 5. Add requirements for screening or testing of raw milk transported in containers other than bulk milk tankers (i.e., milk cans), which reflects changes in the industry regarding bulk milk containers;
- 6. Add information regarding the processing requirements for heat-treated cream;
- 7. Add grade "A" pasteurized condensed standards for temperature and coliform to the grade "A" milk and milk products standards in 2VAC5-490-50;
- 8. Eliminate certain standards applying to nonfat dry milk, which are quality based and not dairy safety related;
- 9. Add provisions authorizing the utilization of electronic temperature recording charts on dairy farm bulk tanks, which reflects changes in the industry as well as the 2013 PMO and allows the industry to legally utilize electronic temperature monitoring systems;
- 10. Add provisions relating to temperature requirements for "milk product flavoring slurries" and cultured cottage cheese, which enables the dairy program to provide specific temperature requirements for these products and processes and further ensures the safety of the milk supply;
- 11. Incorporate by reference Appendices H and S from the 2013 PMO into the regulation. Appendix H relates to regulatory requirements at the dairy farm level (e.g., temperature) and Appendix S addresses aseptic processing requirements at the grade "A" fluid milk processing plant;
- 12. Add provisions allowing for use of hand drying devices; and
- 13. Add certain requirements relating to block-bleed-block or mix-proof valves for automatic milking installations to ensure that these machines have proper valves and further ensure that the milk supply remains safe.

Part I

Definitions and Standards of Identity

2VAC5-490-10. Definitions and standards of identity.

The following words and terms when used in this chapter shall have the following meanings unless the context clearly indicates otherwise:

"A hazard that is reasonably likely to occur" means a hazard for which a prudent milk plant, receiving station or transfer station operator would establish controls because experience, illness data, scientific reports, or other information provide a basis to conclude that there is a reasonable possibility that, in the absence of these controls, the hazard will occur in the particular type of milk, milk product, condensed milk, condensed milk product, dry milk, or dry milk product being processed.

"Abnormal milk" means milk that is visibly changed in color, odor, or texture and is not suitable for sale for grade A purposes.

"Acidified milk" means "acidified milk" as defined in 21 CFR 131.111.

"Acidified milk product" means a product with an acidity of not less than 0.50% expressed as lactic acid, which product is obtained by the addition of food grade acids to pasteurized cream, half-and-half, heavy cream, light cream, lowfat milk, milk, skim milk, or sour cream.

"Acidified sour cream" means "acidified sour cream" as defined in 21 CFR 131.162.

"Adulterated milk" or "adulterated milk product" means any milk, milk product, condensed milk product, or dry milk product which that meets one or more of the conditions specified in Section 402 of the Federal Food, Drug, and Cosmetic Act, as amended (21 USC § 342).

"Aseptically processed milk" or milk product" means milk that is hermetically sealed in a container and so thermally processed before or after packaging in conformance with 21 CFR Parts 108, 110, and 113 and the provisions of this chapter so as to render the product free of microorganisms capable of reproducing in the product under nonrefrigeration conditions of storage and distribution and that is free of viable microorganisms (including spores) capable of causing disease in humans.

"Aseptically processed milk product" means any milk or milk product that is hermetically sealed in a container and so thermally processed before or after packaging in conformance with 21 CFR Part 113 and the provisions of this chapter so as to render the product free of microorganisms capable of reproducing in the product under normal nonrefrigeration conditions of storage and distribution and that is free of viable microorganisms (including spores) capable of causing disease in humans.

"Aseptic processing <u>and packaging</u>" means that the product has been subjected to sufficient heat processing and packaged in a hermetically sealed container, to conform to the applicable requirements of 21 CFR <u>Part Parts 108, 110, and 113</u> and the provisions of this chapter and to maintain the commercial sterility of the product under normal nonrefrigerated conditions. <u>Aseptic processing and packaging includes low-acid grade A aseptic and packaged milk products.</u>

"Aseptic processing and packaging system" or "APPS" means the aseptic processing and packaging system in a milk plant that is comprised of the processes and equipment used to process and package aseptic grade A milk or milk products.

The APPS shall be regulated in accordance with the applicable requirements of 21 CFR Parts 108, 110, and 113. The APPS shall begin at the constant level tank and end at the discharge of the packaging machine, provided that the process authority may provide written documentation that will clearly define additional processes or equipment that are considered critical to the commercial sterility of the product.

"Audit" means an evaluation of the entire milk plant, receiving station, or transfer station facility and HACCP System system to ensure compliance with the voluntary HACCP program requirements of this chapter, with the exception of the APPS for aseptic processing and packaging of milk plants.

"Automatic milking installation" means the entire installation of one or more automatic milking units, including the hardware and software utilized in the operation of individual automatic milking units, the animal selection system, the automatic milking machine, the milk cooling system, the system for cleaning and sanitizing the automatic milking unit, the teat cleaning system, and the alarm systems associated with the process of milking cooling, cleaning, and sanitation.

"Boiled custard" means "eggnog" as defined in 21 CFR 131.170.

"Bulk milk hauler <u>sampler</u>" means any person who holds a permit issued by the Virginia Department of Agriculture and Consumer Services to collect official milk samples and transport: (i) raw milk from a dairy farm to a milk plant, receiving station, or transfer station; or (ii) raw milk products from one milk plant, receiving station, or transfer station to another milk plant, receiving station, or transfer station.

"Bulk milk pickup tanker" means a vehicle, including the truck, tank, and those appurtenances necessary for its use, used by a bulk milk hauler sampler to transport bulk raw milk for pasteurization, ultra-pasteurization, aseptic processing and packaging, or retort processed after packaging from a dairy farm to a milk plant, receiving station, or transfer station.

"Buttermilk" means the fluid milk product that remains after the manufacture of butter from milk or cream and contains not less than 8.25% of milk solids not fat.

"Cancel" means to permanently nullify, void, or delete a grade A permit issued by the State Regulatory Authority.

"Centralized deviation log" means a centralized log or file identifying data detailing any deviation of critical limits and the corrective actions taken- as referred to in Appendix K of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision."

"CFR" means the Code of Federal Regulations.

"Clean" means the surfaces of equipment and facilities have had an effective and thorough removal of product, soils, and contaminants.

"Clean in place" or "CIP" means the removal of soil from product contact surfaces in the surface's process position by circulating, spraying, or flowing chemical solutions and water

rinses onto and over the surfaces to be cleaned. Components of the equipment that are not designed to be CIP are removed from the equipment to be cleaned out of place (COP) or manually cleaned. Product contact surfaces shall be inspectable, except when the cleanability by CIP has been documented and accepted by the State Regulatory Authority. In such accepted equipment, all product and solution contact surfaces are not required to be readily accessible for inspection (i.e., permanently installed pipelines and silo tanks).

"Cleaned out of place" or "COP" means manually cleaned or not designed to be CIP.

"Coffee cream" means "light cream."

"Commercially sterile" means (i) the food has been thermally processed by the application of heat to render the food free of viable microorganisms (including spores) of public health significance and microorganisms capable of reproducing in the food under normal nonrefrigerated conditions of storage and distribution; or (ii) the food has been processed with the application of heat, and the water activity of the food has been controlled to render the food free of microorganisms capable of reproducing in the food under normal nonrefrigerated conditions of storage and distribution.

"Common name" means the generic term commonly used for domestic animals (i.e., cattle, goats, sheep, water buffalo).

"Concentrated milk" means "concentrated milk" as defined in 21 CFR 131.115.

"Concentrated milk product" means any of the following foods: homogenized concentrated milk, homogenized concentrated skim milk, concentrated lowfat milk, concentrated milk, and concentrated skim milk, which when combined with potable water according to the instructions printed on the food's container, conforms to the definition of the corresponding milk product in this chapter.

"Concentrated or condensed buttermilk" means product resulting from the removal of a considerable portion of water from buttermilk and complies with all applicable requirements of this chapter.

"Condensed buttermilk" means the product resulting from the removal of a considerable portion of water from buttermilk.

"Condensed and dry milk product" means grade A condensed milk, grade A condensed and dry whey, grade A dry milk product, or grade A dry milk and whey product.

"Condensed milk" means concentrated milk as defined in 21 CFR 131.115. This definition does not include:

- 1. Any sterilized milk or milk product, when the sterilized milk or milk product is hermetically sealed in a container and processed, either before or after sealing, so as to prevent microbial spoilage; or
- 2. Any evaporated milk or sweetened condensed milk, except when the evaporated milk or sweetened condensed

milk is combined with other substances in the commercial preparation of any pasteurized, ultra-pasteurized, or aseptically processed <u>and packaged</u> milk or milk product.

"Condensed whey" means "condensed whey" as defined in 21 CFR 184.1979(a)(2).

"Consumer" means any person who uses any grade A milk, grade A milk product, or milk product.

"Contaminated milk" means milk that is unsaleable or unfit for human consumption following treatment of the animal with veterinary products (i.e., antibiotics that have withhold requirements or treatment with medicines or insecticides not approved for use on dairy animals by FDA or the Environmental Protection Agency).

"Corrective action" means procedures followed when a deviation occurs.

"Cottage cheese" means "cottage cheese" as defined in 21 CFR 133.128.

"Cottage cheese dry curd" means "dry curd cottage cheese."

"Cream" means "cream" as defined in 21 CFR 131.3(a).

"Critical control point" or "CCP" means a step at which control can be applied and is essential to prevent or eliminate a milk, milk product, condensed milk, condensed milk product, dry milk, or dry milk product safety hazard or reduce it to an acceptable level.

"Critical limit" means a maximum value or a minimum value to which a biological, chemical, or physical parameter must shall be controlled at a critical control point to prevent, eliminate, or reduce to an acceptable level the occurrence of a milk, milk product, condensed milk, condensed milk product, dry milk, or dry milk product safety hazard.

"Cultured half-and-half" means "sour half-and-half."

"Cultured milk" means "cultured milk" as defined in 21 CFR 131.112.

"Cultured sour cream" means "sour cream."

"Dairy farm" means any place or premises (i) where any cow, goat, sheep, water buffalo, or other mammal (except humans) is kept, for milking purposes; or (ii) from which cow, goat, sheep, water buffalo, or other mammal (except humans) milk or any milk product is sold or offered for sale for human consumption or provided to a milk plant, cheese plant, frozen desserts plant, transfer station, or receiving station.

"Deficiency" means an element that is inadequate or missing from the requirements of a HACCP <u>System system</u> or with the voluntary HACCP program requirements of this chapter.

"Deny" means the State Regulatory Authority will not issue a grade A permit to the applicant.

"Deviation" means a failure to meet a critical limit.

"Drug" means: (i) articles recognized in the official United States Pharmacopeia, official Homeopathic Pharmacopeia of the United States, or official National Formulary, or any supplement to any of them; (ii) articles intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease in man or other animals; (iii) articles other than food intended to affect the structure or any function of the body of man or other animals; and (iv) articles intended for use as a component of any articles specified in clause (i), (ii), or (iii) of this definition, but does not include devices or their components, parts, or accessories.

"Dry buttermilk" means "dry buttermilk" as defined in 7 CFR 58.251.

"Dry buttermilk product" means "dry buttermilk product" as defined in 7 CFR 58.251.

"Dry cream" means "dry cream" as defined in 21 CFR 131.149.

"Dry curd cottage cheese" means "dry curd cottage cheese" as defined in 21 CFR 133.129.

"Dry milk product" means a product resulting from the drying of any milk or milk product and any product resulting from the combination of a dry milk product with other safe and suitable dry ingredients.

"Dry whey" means "dry whey" as defined in 21 CFR 184.1979.

"Dry whey product" means a product resulting from the drying of whey or whey products and any product resulting from the combination of dry whey products with other wholesome dry ingredients.

"Dry whole milk" means "dry whole milk" as defined in 21 CFR 131.147.

"Eggnog" means "eggnog" as defined in 21 CFR 131.170.

"Eggnog-flavored milk" means a milk product, to which an emulsifier and a maximum of 0.5% stabilizer may have been added consisting of a mixture of (i) at least 3.25% butterfat, (ii) at least 0.5% egg yolk solids, (iii) sweetener, and (iv) flavoring.

"FDA" means the United States Food and Drug Administration.

"Flavored milk" means milk to which a flavor or sweetener has been added.

"Flavored milk product" means any milk product to which a flavor or sweetener has been added.

"Food allergen" means the proteins in foods that are capable of inducing an allergic reaction or response in some individuals and means "food allergen" as defined in the Food Allergen Labeling and Consumer Protection Act of 2004 (21 USC § 301 et seq.).

"Fortified milk" means milk, other than vitamin D milk, the vitamin or mineral content of which milk has been increased.

"Fortified milk product" means any milk product, other than a vitamin D milk product, the vitamin or mineral content of which milk product has been increased.

"Frozen milk concentrate" means the frozen milk product which, that when water is added in accordance with instructions on the package containing the frozen milk product, the reconstituted milk product contains the percentage of milkfat and the percentage of milk solids not fat of milk. Frozen milk concentrate is stored, transported, and sold in a frozen state.

"Goat milk" means the normal lacteal secretion, practically free of colostrum, obtained by the complete milking of one or more healthy goats which, that when sold in retail packages, contains not less than 2.5% milkfat and not less than 7.5% nonfat milk solids not fat.

"Grade A buttermilk" or "grade A buttermilk product" means buttermilk from butter made from grade A cream, which has been pasteurized prior to use in accordance with item 16p of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision," provided that this requirement shall not be construed as barring any other heat treatment process that has been recognized by FDA to be equally efficient in the destruction of staphylococcal organisms and that is approved by the State Regulatory Authority.

"Grade A condensed and dry whey" means condensed or dry whey which that complies with the provisions of the "Grade "A" Pasteurized Milk Ordinance, 2009 2013 Revision" and this chapter.

"Grade A condensed milk" means condensed milk which that complies with the provisions of the "Grade "A" Pasteurized Milk Ordinance, 2009 2013 Revision" and this chapter.

"Grade A dry milk product" means any dry milk product which that complies with the provisions of the "Grade "A" Pasteurized Milk Ordinance, 2009 2013 Revision" and this chapter.

"Grade A dry milk and whey product" means any dry milk or whey product which that has been produced for use in any grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged milk product; and which that has been manufactured under the provisions of the "Grade "A" Pasteurized Milk Ordinance, 2009 2013 Revision" and this chapter.

"Grade A permit" means the written document issued by the state regulatory authority State Regulatory Authority to the person who operates a: (i) dairy farm to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing; (ii) milk plant; (iii) receiving station; (iv) transfer station; (v) milk condensing plant; (vi) milk drying plant; (vii) whey condensing plant; or (viii) whey drying plant; after the State Regulatory Authority has inspected and approved the person's operation and determined the person's compliance with the provisions of this chapter for the operations specified in this definition.

"Grade A whey" means whey from cheese made from grade A raw milk for pasteurization, ultra-pasteurization, aseptic

processing and packaging, or retort processed after packaging, that has been manufactured under the provisions of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision" and this chapter.

"HACCP" means hazard analysis critical control point.

"HACCP plan" means the written document, which is based upon the principles of HACCP and delineates the procedures to be followed.

"HACCP system" means the implemented HACCP plan and prerequisite programs, including other applicable requirements of the voluntary HACCP program of this chapter.

"Half-and-half" means "half-and-half" as defined in 21 CFR 131.180.

"Hazard" means a biological, chemical, or physical agent that is reasonably likely to cause illness or injury in the absence of its control.

"Hazard analysis" means the process of collecting and evaluating information on hazards associated with the milk, milk product, condensed milk, condensed milk product, dry milk, or dry milk product under consideration, to decide which are reasonably likely to occur and must be addressed in the HACCP plan.

<u>"Hazard analysis critical control point" or "HACCP" means</u> a systematic approach to the identification, evaluation, and control of significant milk and milk product safety hazards.

"Heavy cream" means "heavy cream" as defined in 21 CFR 131.150.

"Lactose-reduced lowfat milk" means the product resulting from the addition of safe and suitable enzymes to convert enough lactose to glucose or galactose so that less than 30% of the lactose remains in the lowfat milk from which the product is made.

"Lactose-reduced milk" means the product resulting from the addition of safe and suitable enzymes to convert enough lactose to glucose or galactose so that less than 30% of the lactose remains in the milk from which the product is made.

"Lactose-reduced skim milk" means the product resulting from the addition of safe and suitable enzymes to convert enough lactose to glucose or galactose so that less than 30% of the lactose remains in the skim milk from which the product is made.

"Light cream" means "light cream" as defined in 21 CFR 131.155.

"Light whipping cream" means "light whipping cream" as defined in 21 CFR 131.157.

"Low-acid aseptic milk and retort milk and milk products" means milk or milk products having a water activity (aw) greater than 0.85 and a finished equilibrium pH greater than 4.6 and that are regulated under 21 CFR Parts 108, 110, and 113. Low-acid aseptic milk and retort milk and milk products are stored under normal nonrefrigerated conditions. Excluded

from this definition are low-acid milk and milk products that are labeled for storage under refrigerated conditions.

"Lowfat dry milk" means "lowfat dry milk" as defined in 21 CFR 131.123.

"Lowfat yogurt" means "lowfat yogurt" as defined in 21 CFR 131.203.

"Low-sodium lowfat milk" means the milk product resulting from the treatment of lowfat milk by a process of passing the lowfat milk through an ion exchange resin process, or by any other process which that has been recognized by the Food and Drug Administration that effectively reduces the sodium content of the product to less than 10 milligrams in 100 milliliters.

"Low-sodium milk" means the milk product resulting from the treatment of milk by a process of passing the milk through an ion exchange resin process, or by any other process which that has been recognized by the Food and Drug Administration that effectively reduces the sodium content of the product to less than 10 milligrams in 100 milliliters.

"Low-sodium skim milk" means the milk product resulting from the treatment of skim milk by a process of passing the skim milk through an ion exchange resin process, or by any other process which that has been recognized by the Food and Drug Administration that effectively reduces the sodium content of the product to less than 10 milligrams in 100 milliliters.

"Market milk" means milk.

"Market milk product" means milk product.

"Milk" means the whole, fresh, clean lacteal secretion obtained by the complete milking of one or more healthy cows, goats, sheep, water buffalo, or other mammal (except humans) intended for human consumption excluding that obtained before and after birthing, for such a period as may be necessary to render the milk practically colostrum free.

"Milk condensing plant" means any plant in which milk or any milk product is condensed or dried, or in which milk or any milk product is received, separated, or otherwise processed for drying and packaging.

"Milk distributor" means any person who offers for sale or sells to another any milk or milk product.

"Milk drying plant" means any plant in which milk or any milk product is condensed or dried, or in which milk or any milk product is received, separated, or otherwise processed for drying and packaging.

"Milkfat" means the fat of milk.

"Milkhouse" means the building or room in which there is conducted on a grade A dairy farm (i) the cooling, handling, and storing of milk and (ii) the washing, sanitizing, and storing of milk containers and utensils.

"Milk plant" means any place, premises, or establishment where any milk or milk product is collected, handled, processed, stored, pasteurized, ultra-pasteurized, aseptically processed <u>and packaged</u>, <u>retort processed after packaged</u>, condensed, dried, <u>packaged</u>, bottled, or prepared for distribution.

"Milk producer" means any person who operates a dairy farm and who provides, sells, or offers milk for sale for human consumption or to a milk plant, receiving station, or transfer station.

"Milk product" means grade A milk and grade A milk products meeting the requirements of 2VAC5-490-15.

"Misbranded milk" or "misbranded milk product" means any milk, milk product, or condensed and dry milk product that:
(i) satisfies any of the conditions specified in § 403 of the Federal Food, Drug, and Cosmetic Act, as amended (21 USC § 343); (ii) does not conform to its definition; or (iii) is not labeled in accordance with 2VAC5-490-40.

"Monitor" means to conduct a planned sequence of observations or measurements to assess whether a CCP is under control or to assess the conditions and practices of all required prerequisite programs.

"NCIMS" means the National Conference on Interstate Milk Shipments.

"Nonconformity" means a failure to meet specified requirements of the HACCP system.

"Nonfat dry milk" means "nonfat dry milk" as defined in 21 CFR 131.125.

"Nonfat dry milk fortified with vitamins A and D" means "nonfat dry milk fortified with vitamins A and D" as defined in 21 CFR 131.127.

"Nonfat yogurt" means "nonfat yogurt" as defined in 21 CFR 131.206.

"Normal storage" means storage at a temperature of 45°F or cooler, but does not include freezing.

"Official laboratory" means a biological, chemical, or physical laboratory operated by the Commonwealth of Virginia.

"Officially designated laboratory" means: (i) a commercial laboratory authorized by the State Regulatory Authority to examine milk, milk product, condensed and dry milk product, producer samples of Grade "A" raw milk for pasteurization, or commingled milk tank truck samples of raw milk or milk products or (ii) a milk-industry laboratory authorized by the State Regulatory Authority to examine milk producer samples of raw milk for pasteurization, and for drug residues and bacterial limits, samples of raw milk commingled in a tank truck.

"Pasteurization" or "pasteurized" means the process of heating every particle of milk or milk product in equipment designed and operated in conformance with this chapter, to one of the temperatures given in the following table and held continuously at or above that temperature for at least the corresponding specified time for the equipment indicated:

Temperature	Time	Equipment
145°F*	30 minutes	Vat Pasteurization
161°F*	15 seconds	High Temperature Short Time
191°F	1.0 second	High Temperature Short Time
194°F	0.5 second	High Temperature Short Time
201°F	0.1 second	High Temperature Short Time
204°F	0.05 second	High Temperature Short Time
212°F	0.01 second	High Temperature Short Time

*If: (i) the fat content of the milk or milk product is 10% or greater; (ii) the total solids content of the milk or milk product is 18% or greater; or (iii) the milk or milk product contains added sweeteners, then pasteurization means increasing the specified temperature by 5°F.

*If the dairy product is cream for butter-making, then "pasteurization" means heating to at least 165°F and holding continuously in a vat pasteurizer for not less than 30 minutes or pasteurizing by the High Temperature Short Time method at a minimum temperature of not less than 185°F for not less than 15 seconds.

*If the milk product is eggnog, then "pasteurization" means heating to at least the following temperatures for the corresponding time specifications and equipment:

Temperature	Time	Equipment
155°F	30 minutes	Vat Pasteurization
175°F	25 seconds	High Temperature Short Time
180°F	15 seconds	High Temperature Short Time

Nothing in this definition shall be construed as barring any other process which that has been recognized by the Food and Drug Administration as being equally efficacious as pasteurization, so long as that other process has been approved by the State Regulatory Authority.

"Person" means any individual, plant operator, partnership, corporation, company, firm, trustee, or institution.

"Prerequisite programs" means procedures, including Good Manufacturing Practices good manufacturing practices, that address operational conditions that provide the foundation for the HACCP system.

<u>"Process authority" means a certified microbiologist who</u> has expert knowledge of thermal processing requirements for

low-acid foods, acquired through appropriate education, training, and experience. The process authority must possess advanced testing equipment that will allow them to conduct necessary testing.

"Public" means any person in the Commonwealth.

"Pull date" means the date affixed to a consumer package or container of grade A pasteurized milk or grade A pasteurized milk product which that is the date after the day of manufacturing and processing of the package or container and the last day on which the grade A pasteurized milk or grade A pasteurized milk product as determined by the milk plant may be offered for sale to consumers under normal storage.

"Raw milk" means: (i) any milk or any milk product which that has not been pasteurized, ultra-pasteurized, or aseptically processed; or (ii) or any milk or any milk product which has been pasteurized, ultra-pasteurized, or aseptically processed and which has been exposed to microbiological contamination before, during, or after packaging and packaged, or retort processed after packaging.

"Receiving station" means any place, premises, or establishment where raw milk is: (i) received, collected, handled, stored, or cooled; and (ii) prepared for further transporting.

"Recombined milk" means the food which, that when combined with potable water according to the instructions printed on the food's container, conforms to the milk fat and nonfat milk solids requirements for milk, as specified in the definition of "milk."

"Recombined milk product" means the food which, that when combined with potable water according to the instructions printed on the food's container, conforms to the milk fat and milk nonfat solids requirements for the milk product designated on the food's container.

"Reconstituted milk" means "recombined milk."

"Reconstituted milk product" means "recombined milk product."

"Reduced lactose whey" means "reduced lactose whey" as defined in 21 CFR 184.1979a.

"Reduced minerals whey" means "reduced minerals whey" as defined in 21 CFR 184.1979b.

"Retort processed after packaging" means the milk and or milk product has been subjected to sufficient retort heat processing after packaged in a hermetically sealed container, to conform to the applicable requirements of 21 CFR Parts 108, 110, and 113 and to maintain the commercial sterility of the milk and milk product under normal nonrefrigerated conditions.

"Retort processed after packaging system" or ["RRPS" | TRPPS"] means the processes and equipment used to retort process after packaging low-acid grade A milk and milk products. The [RRPS RPPS] shall be regulated in accordance with the applicable requirements of 21 CFR Parts

108, 110, and 113. The [RRPS RPPS] shall begin at the container filler and end at the palletizer, provided that the process authority may provide written documentation that will clearly define additional processes and equipment that are considered critical to the commercial sterility of the milk and milk products.

"Revoke" means to permanently annul, repeal, rescind, countermand, or abrogate a Grade grade A permit issued by the State Regulatory Authority.

"Safe and suitable" means "safe and suitable" as defined in 21 CFR 130.3(d).

"Sanitization" means the application of any effective method or substance to a clean surface for the destruction of pathogens, and of other organisms as far as is practicable, and when used does not adversely affect: (i) the equipment which that comes in contact with milk, milk product, or condensed and dry milk product; (ii) the milk, milk product, or condensed and dry milk product; or (iii) the health of consumers.

"Septage" means material accumulated in a pretreatment system or privy.

"Sewage" means water-carried and nonwater-carried human excrement; kitchen, laundry, shower, bath, or lavatory wastes separately or together with such underground, surface, storm and other water and liquid industrial wastes as may be present from residences, buildings, vehicles, industrial establishments or other places.

"Sheep milk" means the normal lacteal secretion, practically free of colostrum, obtained by the complete milking of one or more healthy sheep.

"Sour cream" means "sour cream" as defined in 21 CFR 131.160.

"State Regulatory Authority" means the Commissioner of Agriculture and Consumer Services or his agent when carrying out any duty specified in § 3.2-5207 of the Code of Virginia or the State Health Commissioner or his agent when carrying out any duty specified in § 3.2-5208 of the Code of Virginia.

"Suspend" means to temporarily nullify, void, debar, or cease for a period of time a grade A permit issued by the State Regulatory Authority.

"Sweetened condensed milk" means "sweetened condensed milk" as defined in 21 CFR 131.120.

"Table cream" means "light cream" as defined in 21 CFR 131.155.

"Transfer station" means any place, premises, or establishment where milk or milk products are transferred directly from one milk tank truck to another.

"Trim" means to shorten the hair on the udder and tail of milking cows and goats by clipping, singeing, cutting, or other means. "Ultra-pasteurized" means, when used to describe any milk or milk product, that the milk or milk product has been thermally processed at a temperature of 280°F (138°C) or hotter for at least two seconds, either before or after packaging, so as to produce a product that has an extended shelf life under normal storage refrigerated conditions as defined in 21 CFR 131.3.

"Undesirable milk" means milk that, prior to the milking of the animal, is expected to be unsuitable for sale, such as milk containing colostrum.

"Validation" means the element of verification focused on collecting and evaluating scientific and technical information to determine whether the HACCP plan, when properly implemented, will effectively control the hazards.

"Verification" means those activities, other than monitoring, that determine the validity of the HACCP plan and that the HACCP system is operating according to the plan.

"Vitamin A milk" means milk, the vitamin A content of which has been increased to at least 2000 International Units per quart.

"Vitamin A milk product" means a milk product, the vitamin A content of which has been increased to at least 2000 International Units per quart.

"Vitamin D milk" means milk, the vitamin D content of which has been increased to at least 400 International Units per quart.

"Vitamin D milk product" means a milk product, the vitamin D content of which has been increased to at least 400 International Units per quart.

"Water buffalo milk" means the normal lacteal secretion, practically free of colostrum, obtained by the complete milking of one or more healthy water buffalo.

"Whey" means "whey" as defined in 21 CFR 184.1979.

"Whey condensing plant" means a plant in which whey is condensed or in which whey is received and processed for drying and packaging.

"Whey drying plant" means a plant in which whey is dried or in which whey is received and processed for drying and packaging.

"Whey product" means any fluid product removed from whey, or made by the removal of any constituent from whey, or by the addition of any wholesome substance to whey or parts thereof.

"Whipped cream" means "heavy cream" as defined in 21 CFR 131.150 or "light whipping cream" as defined in 21 CFR 131.157, into which air or gas has been incorporated.

"Whipped light cream" means "light whipped cream" as defined in 21 CFR 131.155, into which air or gas has been incorporated.

"Whipping cream" means "light whipping cream" as defined in 21 CFR 131.157.

"Yogurt" means "yogurt" as defined in 21 CFR 131.200.

Part II Grade A Milk and Milk Products

2VAC5-490-15. Grade A milk and milk products.

A. Grade A milk and milk products regulated under this chapter include:

- 1. All grade A raw milk or milk products for pasteurization, ultra-pasteurization, aseptic processing and packaging, or retort processed after packaging, and all grade A pasteurized, ultra-pasteurized, aseptically processed and packaged, or retort processed and packaged milk and milk products;
- 4. 2. All milk and milk products with a standard of identity provided for in 21 CFR Part 131, with the exception of 21 CFR 131.120 sweetened condensed milk;
- 2. 3. Cottage cheese as defined by 21 CFR 133.128 and dry curd cottage cheese as defined by 21 CFR 131.129;
- 3. 4. Whey and whey products as defined in 21 CFR 184.1979, 21 CFR 184.1979a, 21 CFR 184.1979b, and 21 CFR 184.1979c; whey product; dry whey product; and grade A condensed and dry whey and whey products;
- 4. <u>5.</u> Modified versions of these foods listed in subdivisions <u>4. 2</u> and <u>2. 3</u> of this subsection, pursuant to 21 CFR 130.10 Requirements for foods named by use of a nutrient content claim and a standardized term:
- 5. 6. Milk and milk products as defined in subdivisions 1, 2, 3, 4, and 4 5 of this subsection, packaged in combination with other food or foods not included in this section that are appropriately labeled with a statement of identity to describe the food in final package form (e.g., "cottage cheese with pineapple" or "fat free milk with plant sterols"); and
- 6. 7. Products not included in subdivisions $4 \ \underline{2}$ through $5 \ \underline{6}$ of this subsection shall be grade A milk products if they contain a minimum of (i) 2.0% milk protein as determined by total kjeldahl nitrogen Kjeldahl Nitrogen (TKN) X 6.38; and (ii) a minimum of 65% by weight milk, milk product, or a combination of milk products.
- B. Safe and suitable, as defined in 21 CFR 130.3(d), nongrade A dairy ingredients may be utilized in the production of grade A milk and milk products included under 2VAC5-490-15 A when added to a level needed for a functional or technical effect; limited by good manufacturing practices (GMPs); and are either (i) prior sanctioned or otherwise approved by the federal Food and Drug Administration, (ii) generally recognized as safe (GRAS), or (iii) an approved food additive listed in the Code of Federal Regulations with the exception that for those grade A milk and milk products for which a federal standard of identity has been established only ingredients provided for under the standard of identity for each grade A milk or milk product may be utilized. Nongrade A dairy ingredients shall not be used to increase the weight or volume of grade A milk or

milk products or to displace any grade A dairy ingredients nor shall using nongrade A dairy ingredients to increase the weight or volume of grade A milk or milk products be considered a suitable functional or technical effect.

- C. Grade A milk and milk products shall also include those milk and milk products included under 2VAC5-490-15 A and 2VAC5-490-15 B that have been aseptically processed and then packaged.
- D. Grade A milk and milk products shall not include:
 - 1. A milk or milk product in which the milkfat of the milk or milk product has been substituted in part or in whole by any other animal or vegetable fat; provided that other fat sources may be included when they are used for purposes currently accepted in any other grade A milk or milk product, such as carriers for vitamins and as an ingredient in emulsifiers and stabilizers:
- 2. Coffee based products where coffee or water is the primary ingredient as indicated in the ingredient statement;
- 3. Tea based products where tea or water is the primary ingredient as indicated in the ingredient statement;
- 4. Dietary products (except as defined in 21 CFR 130.10);
- 5. Infant formula;
- 6. Ice cream or other frozen desserts;
- 7. Butter:
- 8. Standardized cheese with the exception of cottage cheese as defined under 21 CFR 133.128 and dry curd cottage cheese as defined under 21 CFR 131.129 and nonstandardized cheese; or
- 9. Puddings.
- E. Milk and milk products which that have been retort processed after packaging, or which that have been concentrated (condensed) or dried shall conform to the requirements of 2VAC5-490-15 A and 2VAC5-490-15 B if they are utilized as an ingredient in any grade A milk or milk product, or if they are labeled as grade A under 2VAC5-490-15 A 4 5.
- F. Powdered dairy blends may be labeled grade A and used as ingredients in grade A milk and milk products, such as cottage cheese dressing mixes or starter media for cultures used to produce various grade A cultured milk and milk products, if they meet the requirements of this chapter. If powdered dairy blends are used as an ingredient in grade A milk and milk products, blends of dairy powders must be blended under conditions which that meet all applicable grade A powdered dairy blends requirements. Grade A powder blends must be made from grade A powdered milk and milk products, except that small amounts of functional ingredients not to exceed 10% by weight of the finished blend which that are not grade A are allowed in grade A blends when the finished ingredient is not available in grade A form (e.g., sodium caseinate).

- G. Grade A milk and milk products include the following: acidified lowfat milk, acidified nonfat milk, acidified milk, acidified milk product, acidified reduced fat milk, acidified skim milk, acidified sour cream, acidified sour half-and-half, aseptically processed milk, aseptically processed milk product, boiled custard, buttermilk, coffee cream, concentrated milk, concentrated milk product, condensed buttermilk, cottage cheese, cottage cheese dry curd, cream, cultured half-and-half, cultured milk, cultured lowfat milk, cultured nonfat milk, cultured reduced fat milk, cultured skim milk, cultured sour cream, cultured sour half-and-half, dry buttermilk, dry buttermilk product, dry cream, dry curd cottage cheese, dry whole milk, eggnog, eggnog-flavored milk, flavored milk, flavored milk product, fortified milk, fortified milk product, frozen milk concentrate, goat milk, half-and-half, heavy cream, heavy whipping cream, lactosereduced lowfat milk, lactose-reduced nonfat milk, lactosereduced milk, lactose-reduced reduced fat milk, lactosereduced skim milk, light cream, light whipping cream, lowfat cottage cheese, lowfat dry milk, lowfat milk, lowfat yogurt, low-sodium lowfat milk, low-sodium nonfat milk, lowsodium milk, low-sodium reduced fat milk, low-sodium skim milk, milk, nonfat milk, nonfat dry milk, nonfat dry milk fortified with vitamins A and D, nonfat yogurt, recombined milk, recombined milk product, reconstituted milk, reconstituted milk product, reduced lactose whey, reduced fat milk, reduced minerals whey, sheep milk, skim milk, sour cream, sour half-and-half, table cream, vitamin A milk, vitamin A milk product, vitamin D milk, vitamin D milk product, whipped cream, whipped light cream, whipping cream, and yogurt.
- H. Persons holding a valid permit on January 1, 2011, to receive and process milk for manufacturing purposes pursuant to 2VAC5 531 50 of the Regulations Governing Milk for Manufacturing Purposes and who have manufactured dairy products not previously considered to be grade A dairy products prior to January 1, 2011, may continue to manufacture and sell those specific dairy products they produced prior to January 1, 2011, after December 10, 2010; however, this limited exemption shall not apply to any new or revised dairy products the permit holder wishes to manufacture if the new or revised dairy product is considered to be grade A.

Part III

Adulterated or Misbranded Milk or Milk Products

2VAC5-490-20. Adulterated or misbranded milk or milk products.

- A. No person may produce, provide, sell, offer, expose for sale, or possess with intent to sell any adulterated or misbranded: condensed milk product; dry milk product; milk; or milk product.
- B. Each person who produces, provides, sells, offers, exposes for sale, or possesses any adulterated or misbranded: condensed milk product; dry milk product; milk; or milk

product shall be subject to having the person's adulterated or misbranded: condensed milk product, dry milk product, milk, or milk product impounded by the State Regulatory Authority.

- C. No person may provide, sell, offer, or expose for sale any: condensed milk product;, dry milk product;, milk;, or milk product to any milk plant for use in any grade A milk or grade A milk product if the person does not possess a permit from the State Regulatory Authority, unless Commissioner of Agriculture and Consumer Services makes a finding in writing (which the Commissioner of Agriculture and Consumer Services may renew for terms not to exceed 90 days per term, without limitation) that: (i) the supply of grade A raw milk for pasteurization, ultra-pasteurization, or aseptic processing is not adequate to meet the nutritional needs of any person who secures milk in the Commonwealth; or (ii) the supply of pasteurized, ultra-pasteurized, or aseptically processed milk or milk product at retail is not available for purchase by any person who secures milk in the Commonwealth.
- D. No person may produce, provide, sell, offer, expose for sale, or possess any: condensed milk product; dry milk product; milk; or milk product; under the provision of subsection C of this section unless the condensed milk product, dry milk product, milk, or milk product is labeled "ungraded."

2VAC5-490-25. Impounding of adulterated or misbranded condensed milk, condensed milk product, dry milk, dry milk product, milk, or milk product.

The State Regulatory Authority shall comply with the following administrative procedures when impounding any adulterated or misbranded condensed milk, condensed milk product, dry milk, dry milk product, milk, or milk product to prevent movement of these products until such violations of critical processing elements have been corrected:

- 1. The State Regulatory Authority shall serve the person with a written impoundment notice. The written impoundment notice shall specify the violations and inform the person of the opportunity to appear before the State Regulatory Authority in person, by counsel, or by other qualified representative at a fact-finding conference for the informal presentation of factual data, arguments, and proof to contest the written notice of violation.
- 2. The written impoundment notice shall include:
- a. The name of the adulterated or misbranded condensed milk, condensed milk product, dry milk, dry milk product, milk, or milk product;
- b. The size and number of separate units in the lot being impounded;
- c. The product code and sell by date for the lot of product, if each exists; and
- d. A statement directing the person to:

- (1) Immediately remove from sale the entire lot of adulterated or misbranded condensed milk, condensed milk product, dry milk, dry milk product, milk, or milk product;
- (2) Isolate and identify as not for sale the entire lot of adulterated or misbranded condensed milk, condensed milk product, dry milk, dry milk product, milk, or milk product in the person's storage area in a location separate from any storage accessible from a retail sales area; and
- (3) Comply with one of the following options:
- (a) If the condensed milk, condensed milk product, dry milk, dry milk product, milk, or milk product is adulterated: (i) the entire lot shall be destroyed or (ii) the entire lot shall be held and returned to the manufacturer, distributor, or producer; or
- (b) If the condensed milk, condensed milk product, dry milk, dry milk product, milk, or milk product is misbranded: (i) the entire lot shall be destroyed; (ii) the entire lot shall be held and returned to the manufacturer, distributor, or producer; or (iii) the entire lot shall be held and new labels affixed to each container in the lot which that comply with all provisions for labeling of condensed milk, condensed milk product, dry milk, dry milk product, milk, or milk product contained in this chapter prior to being offered for sale.

Part IV Permits

2VAC5-490-30, Permits.

- A. No person may produce, provide, manufacture, sell, offer for sale, or store in the Commonwealth, or bring, send, or receive into the Commonwealth, any milk, milk product, market milk, market milk product or condensed and dry milk product for use in the commercial preparation of grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaging milk or milk product unless the person possesses a grade A permit from the State Regulatory Authority. Nothing in this chapter shall be deemed to require a person who is a broker, agent, or distributor's representative to have a grade A permit if the person buys condensed and dry milk product for, or sells condensed and dry milk product to, a milk plant that has a valid grade A permit from any state.
- B. Only a person who complies with the requirements of this chapter shall be entitled to receive and retain a grade A permit. Permits shall not be transferable with respect to persons or locations. Each person whose name appears on a grade A permit shall be at least 18 years of age. Each person requesting a grade A permit shall provide the State Regulatory Authority with the following information:
 - 1. The name of the person or persons to whom the permit is to be issued:
 - 2. If the person or persons are requesting a permit for a partnership, corporation, firm, trustee, or institution, the

- person or persons shall provide the articles of incorporation, partnership agreement, trust document, or other document identifying the names, titles, and mailing addresses of all responsible officials for the partnership, corporation, firm, trustee, or institution;
- 3. The address of the facility being permitted, including the street and number, city, state, and zip code. Addresses containing post office box designations shall not be permitted;
- 4. The trade name the permit holder will use if the permit holder will not be trading in the name to which the grade A permit is issued;
- 5. The name, mailing address, and telephone number for one responsible person designated by the grade A permit holder to receive all sample reports and official correspondence from the State Regulatory Authority;
- 6. If the permit application is for a grade A dairy farm, the name of the milk marketing organization or milk marketing cooperative to which the permit holder belongs or the buyer of its milk;
- 7. The names and phones numbers of responsible persons to contact at the grade A dairy farm or plant;
- 8. If the permit application is for a grade A dairy farm, the name, address, and telephone number of the owner of the dairy farm;
- 9. The printed name, signature, title, and date signed for each person whose name appears on the permit;
- 10. The printed name, signature, title, and date signed by the most responsible official for the partnership, corporation, firm, trustee, or institution if the permit is to be issued in the name of a partnership, corporation, company, firm, trustee, or institution; and
- 11. If the permit application is for a grade A plant permit, the plant code embossed or printed on packages of milk, milk product, condensed milk, condensed milk product, dry milk, or dry milk product packaged by the plant to identify the plant in lieu of printing the plant's name and address on the packages of milk, milk product, condensed milk, condensed milk product, dry milk, or dry milk product, if one has been assigned.
- C. Each person who holds a grade A permit and who requests a change in the name or names on an existing grade A permit shall provide the State Regulatory Authority with the following information:
 - 1. A written statement requesting that the existing grade A permit be canceled that has been signed by each person whose name appears on the existing grade A permit; except that when a person whose name on an existing grade A permit is deceased, the request for cancellation shall be made in writing by the executor or administrator of the permit holder's estate. A copy of the qualification as executor or administrator shall accompany the request for cancellation along with a statement identifying the name of

- the deceased and the date of death. Each signature shall be made next to or above the person's printed name and shall be dated with the date on which the written statement was signed by the grade A permit holder;
- 2. If the existing grade A permit is held in the name of a partnership, corporation, company, firm, trustee, or institution, the written statement requesting the existing grade A permit be canceled shall be signed by a person who is authorized to sign on behalf of the partnership, corporation, company, firm, trustee, or institution. Each signature shall be made next to or above the person's printed name and official title for the partnership, corporation, company, firm, trustee, or institution and shall be dated with the date on which the written statement was signed by the person who is authorized to sign on behalf of the partnership, corporation, company, firm, trustee, or institution; and
- 3. All of the information required by 2VAC5-490-50 B for the State Regulatory Agency to issue a grade A permit.
- D. No person may hold a grade A dairy farm permit if any part of his facilities, equipment, storage, or surroundings (except toilet rooms) requiring inspection is accessed through any room used for domestic purposes or part of any room used for domestic purposes. Toilet rooms used for domestic purposes may be approved as complying with the requirements of this chapter only if: (i) the toilet room is located within 300 feet of the milkroom and (ii) all labor utilized in the milking parlor, milking barn, and milkroom is provided by members of the permit holder's immediate family.
- E. No person who holds a grade A permit shall use or allow anyone else to use his facilities and equipment for any purpose other than that for which the grade A permit was issued.
- F. Each person who holds a grade A dairy farm permit shall display his permit in the milkroom on his dairy farm.
- G. Each person who holds a grade A dairy plant permit shall display his grade A plant permit in his facilities where it is accessible for inspection.
- H. No grade A permit holder may transfer any grade A permit to another person or another location.
- I. No permit holder who has had his grade A dairy farm permit or dairy plant permit revoked by the State Regulatory Authority shall be eligible to hold a grade A dairy farm or dairy plant permit at any time after the permit holder's permit is revoked.
- J. No grade A dairy farm may hold more than one grade A dairy farm permit. Multiple milking facilities or milk tanks on a grade A dairy farm shall not be issued separate grade A dairy farm permits for any reason.

2VAC5-490-31. Authority to cancel, suspend, revoke, or deny a permit.

- A. The State Regulatory Authority may cancel, suspend, or revoke the grade A permit of any person, or may deny to any person a grade A permit if:
 - 1. The grade A permit holder fails to engage daily in the business for which the grade A permit is issued;
 - 2. The grade A permit holder does not daily produce, provide, manufacture, sell, offer for sale, or store in the Commonwealth, or bring, send, or receive into the Commonwealth milk, milk product, condensed milk product, or dry milk product;
 - 3. The grade A permit holder fails to provide at no cost to the State Regulatory Authority samples of milk, milk product, condensed milk product, and dry milk product in the person's possession for testing by the State Regulatory Authority;
 - 4. The grade A permit holder fails to provide on a daily basis milk, milk product, condensed milk product, or dry milk product in the person's possession for sampling and testing by the State Regulatory Authority;
 - 5. The grade A permit holder fails to comply with any requirement of this chapter, or of §§ 3.2-5200 through 3.2-5211 or 3.2-5218 through 3.2-5233 of the Code of Virginia;
 - 6. A public health hazard exists that affects the grade A permit holder's milk, milk product, condensed milk product, or dry milk product;
 - 7. The grade A permit holder or any agent of the grade A permit holder has obstructed or interfered with the State Regulatory Authority in the performance of its duties;
 - 8. The person supplies false or misleading information to the State Regulatory Authority: (i) in the person's application for a grade A permit; (ii) concerning the identity of the person who will control the facility that is the subject of the grade A permit; (iii) concerning the amount of milk, milk product, condensed milk product, or dry milk product which that the person produces, provides, manufactures, sells, offers for sale, or stores in the Commonwealth, or brings, sends, or receives into the Commonwealth and the distribution of the person's milk, milk product, condensed milk product, or dry milk product; (iv) concerning any investigation conducted by the State Regulatory Authority; or (v) concerning the location of any part of the person's operation that is subject to a grade A permit;
 - 9. The grade A permit holder engages in fraudulent activity regarding: (i) the amount of milk, milk product, condensed milk product, or dry milk product the person offers to sell or sells; or (ii) the collection of samples of the person's milk, milk product, condensed milk product, or dry milk product used to determine compliance with any provision

- of this chapter or as a basis for payment for milk, milk product, condensed milk product, or dry milk product;
- 10. Three of the most recent five bacteria counts, somatic cell counts, or cooling temperature determinations conducted on the grade A permit holder's raw milk exceed the standards specified in this chapter;
- 11. Three of the most recent five bacteria counts, coliform determinations, or cooling temperature determinations conducted on the grade A permit holder's milk, milk product, condensed milk product, or dry milk product exceed the standards specified in this chapter;
- 12. Two of the most recent cryoscope tests on the grade A permit holder's milk violate the standard specified in this chapter and the most recent violative sample occurred within two years of the next most recent violative sample;
- 43. 12. The most recent aflatoxin or drug residue test on the grade A permit holder's milk, milk product, condensed milk product, or dry milk product violates the standards specified in this chapter-:
- 44. 13. The most recent phosphatase test on the grade A permit holder's milk, milk product, condensed milk product, or dry milk product violates the standard specified in this chapter;
- 45. 14. The most recent chemical residue test or pesticide residue test on the grade A permit holder's milk, milk product, condensed milk product, or dry milk product exceeds the actionable level, tolerance level, or safe level for any chemical residue or pesticide residue specified in: 40 CFR Part 180 and 21 CFR Parts 70, 71, 73, 74, 80, 82, 130, 131, 133, 170, 172, 173, 174, 175, 176, 177, 178, 189, 556, 570, 573, 589. In the event that no actionable level, tolerance level, or safe level for a chemical residue or pesticides residue has been established in: 40 CFR Part 180 and 21 CFR Parts 70, 71, 73, 74, 80, 82, 130, 131, 133, 170, 172, 173, 174, 175, 176, 177, 178, 189, 556, 570, 573, 589, the tolerance level shall be deemed to be zero:
- 16. 15. The grade A permit holder fails to correct any: (i) violation of this chapter documented as a result of an inspection or (ii) deficiency or nonconformity documented as a result of a HACCP audit that the State Regulatory Authority has cited in a written notice of intent to suspend the person's grade A permit, as a violation of this chapter;
- 47. 16. The grade A permit holder's raw milk for pasteurization is warmer than 50°F two hours after the completion of the first milking or the grade A permit holder's raw milk for pasteurization is warmer than 50°F during or after any subsequent milking;
- 18. 17. The grade A permit holder's equipment is covered or partially covered by an accumulation of milk solids, milk fat, or other residue so that the milk, milk product, condensed milk product, or dry milk product is adulterated;

- 49. 18. The grade A permit holder sells or offers for sale milk, milk products, condensed milk product, or dry milk product which that violate any requirement of this chapter;
- 20. 19. The grade A permit holder's permit is suspended three times within a 12-month period;
- 21. 20. The authority in another state responsible for issuing grade A permits has denied, suspended, or revoked the permit of the person in that state for any act or omission that would violate this chapter or the statutes under which this chapter was adopted, had the act or omission occurred in the Commonwealth; or
- 22. 21. The Virginia Department of Agriculture and Consumer Services has previously revoked the person's grade A permit.
- B. The State Regulatory Authority may summarily suspend a grade A permit for violation of any of the following subdivisions of subsection A of this section: 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18, or 19.
- C. The State Regulatory Authority may suspend from sale any condensed milk, condensed milk product, dry milk, dry milk product, milk, or milk product in violation of the requirements of this chapter processed by any grade A dairy plant permit holder in lieu of suspending the grade A dairy plant permit holder's permit.
- D. If the State Regulatory Authority suspends a permit holder's permit more than three times within any 12-month period, the permit holder's permit shall not be reinstated for a period of three days on the fourth suspension within any 12-month period and six days on the fifth suspension within any 12-month period with three days being added to the required suspension period for each additional suspension thereafter within any 12-month period.
- E. If the State Regulatory Authority issues two written notices of intent to suspend a person's permit for failure to correct the same deficiency within any 12-month period, the State Regulatory Authority may issue and enforce a written notice of intent to summarily suspend the person's permit at any time within six months after the date the written notice of intent to summarily suspend is issued, to summarily suspend the person's permit if the same violation exist on any inspection during the six-month period specified in the written notice of intent to summarily suspend.

2VAC5-490-33. Written warning and suspension notices for violations of quality standards; required procedures.

A. Whenever two of the last four consecutive cooling temperature checks, bacteria counts, or somatic cell counts taken on separate days for a grade A dairy farm permit holder exceed the standard established for grade A raw milk, the State Regulatory Agency shall send a written warning notice to the permit holder or to the person identified by the permit holder to receive sample reports and official correspondence. The warning notice shall inform the permit holder or his representative: (i) concerning which quality standards the

permit holder has violated; (ii) that another sample will be collected within 21 days to determine compliance with the requirements; and (iii) that his the permit holder's grade A dairy farm permit will be suspended whenever three out of the last five consecutive cooling temperature checks, bacteria counts, or somatic cell counts exceed the standards. The warning notice shall be in effect so long as two out of the last four consecutive samples exceed the standard for grade A raw milk. An additional sample shall be collected to determine compliance with the standards for grade A raw milk within 21 days after sending the warning notice, but not before the lapse of three days.

- B. Whenever the last cryoscope test result for a grade A dairy farm permit holder exceeds the standard established for grade A raw milk for the first time in the past two years, the State Regulatory Agency shall send a written warning notice to the permit holder or to the person identified by the permit holder to receive sample reports and official correspondence. The warning notice shall inform the permit holder or his representative: (i) concerning which quality standards the permit holder has violated; (ii) that another sample will be collected in the near future to determine compliance with the requirements; and (iii) that his grade A dairy farm permit will be suspended whenever two cryoscope test results on separate samples exceed the standard within the past two years. The warning notice shall be in effect so long as any sample exceeds the cryoscope standard for grade A raw milk within the past two years. Additional samples shall be collected in the future to determine compliance with the standards for grade A raw milk, but not before the lapse of three days.
- C. B. Whenever two of the last four consecutive cooling temperature checks or bacteria counts taken on separate days from a grade A permit holder's dairy plant exceed the standard established for commingled grade A raw milk for pasteurization, ultra-pasteurization, or aseptically processed and packaged milk or milk product, the State Regulatory Agency shall send a written warning notice to the permit holder or to the person identified by the permit holder to receive sample reports and official correspondence. The warning notice shall inform the permit holder or his representative: (i) concerning which quality standards the permit holder has violated; (ii) that another sample will be collected within 21 days to determine compliance with the requirements of this chapter; and (iii) that the permit holder's grade A permit will be suspended whenever three out of the last five consecutive cooling temperature checks or bacteria counts exceed the quality standards. The warning notice shall be in effect so long as two out of the last four consecutive samples exceed the standard for grade A commingled raw milk for pasteurization, ultra-pasteurization, or aseptically processed and packaged milk or milk product. An additional sample shall be collected to determine compliance with the standards for grade A raw milk within 21 days after sending the warning notice, but not before the lapse of three days.

D. C. Whenever two of the last four consecutive cooling temperature checks, bacteria counts, or coliform counts taken on separate days from a grade A permit holder's dairy plant exceed the standard established for grade A pasteurized or ultra-pasteurized milk or milk products in retail containers, the State Regulatory Agency shall send a written warning notice to the permit holder or to the person identified by the permit holder to receive sample reports and official correspondence. The warning notice shall inform the permit holder or his representative: (i) concerning which quality standards the permit holder has violated for each grade A pasteurized or ultra-pasteurized milk or milk product in retail containers; (ii) that another sample will be collected within 21 days to determine compliance with the requirements of this chapter; and (iii) that the permit holder's grade A pasteurized or ultra-pasteurized milk or milk product in retail containers will be suspended from sale whenever three out of the last five consecutive cooling temperature checks, bacteria counts, or coliform counts exceed the quality standards. The warning notice shall be in effect so long as two out of the last four consecutive samples exceed the standard for grade A pasteurized or ultra-pasteurized milk or milk products in retail containers. An additional sample shall be collected to determine compliance with the standards for grade A raw milk within 21 days after sending the warning notice, but not before the lapse of three days.

E. D. Whenever two of the last four consecutive cooling temperature checks or bacteria counts taken on separate days from a grade A permit holder's dairy plant exceed the standard established for grade A bulk shipped heat-treated milk products, the State Regulatory Agency shall send a written warning notice to the permit holder or to the person identified by the permit holder to receive sample reports and official correspondence. The warning notice shall inform the permit holder or his representative: (i) concerning which quality standards the permit holder has violated for each grade A bulk shipped heat-treated milk product; (ii) that another sample will be collected within 21 days to determine compliance with the requirements of this chapter; and (iii) that the permit holder's grade A permit will be suspended whenever three out of the last five consecutive cooling temperature checks or bacteria counts exceed the quality standards. The warning notice shall be in effect so long as two out of the last four consecutive samples exceed the standard for grade A bulk shipped heat-treated milk products. An additional sample shall be collected to determine compliance with the standards for grade A raw milk within 21 days after sending the warning notice, but not before the lapse of three days.

F. E. Whenever three out of the last five consecutive cooling temperature checks, bacteria counts, or somatic cell counts taken on separate days for a grade A dairy farm permit holder exceed the standard established for grade A raw milk, the State Regulatory Agency shall send a written suspension notice to the permit holder or to the person identified by the

permit holder to receive sample reports and official correspondence. The suspension notice shall inform the grade A dairy farm permit holder: (i) why his the permit holder's grade A permit is being suspended; (ii) that he will be contacted by the State Regulatory Authority to establish a date on which the suspension of his permit will be effective; and (iii) that his grade A permit will not be reinstated until laboratory analysis determine that his raw milk is in compliance with the quality standards.

G. Whenever two cryoscope test results taken on separate days for a grade A dairy farm permit holder exceed the standard established for grade A raw milk within the past two years, the State Regulatory Agency shall send a written suspension notice to the permit holder or to the person identified by the permit holder to receive sample reports and official correspondence. The suspension notice shall inform the grade A dairy farm permit holder: (i) why his grade A permit is being suspended; (ii) that he will be contacted by the State Regulatory Authority to establish a date on which the suspension of his permit will be effective; and (iii) that his grade A permit will not be reinstated until laboratory analysis determine that his raw milk is in compliance with the quality standards.

H. F. Whenever three out of the last five consecutive cooling temperature checks or bacteria counts taken on separate days from a grade A permit holder's dairy plant exceed the standard established for commingled grade A raw milk for pasteurization, ultra-pasteurization, or aseptically processed milk or milk products, the State Regulatory Authority shall send a written suspension notice to the permit holder or to the person identified by the permit holder to receive sample reports and official correspondence. The suspension notice shall inform the grade A dairy plant permit holder that: (i) the permit holder's grade A dairy plant permit is suspended and (ii) should the grade A dairy plant permit holder desire to have his grade A dairy plant permit reinstated, he must make his request in writing to the State Regulatory Authority detailing the actions he has taken and will take to avoid violating the standard he exceeded for commingled grade A raw milk in the future, establishing a date and time by which these actions will be fully implemented and stating the reasons why his request should be granted.

F. G. Whenever three out of the last five consecutive cooling temperature checks, bacteria counts, or coliform counts taken on separate days from a grade A permit holder's dairy plant exceed the standard established for grade A pasteurized or ultra-pasteurized milk or milk products in retail containers, the State Regulatory Authority shall send a written suspension notice to the permit holder or to the person identified by the permit holder to receive sample reports and official correspondence. The suspension notice shall inform the grade A dairy plant permit holder; (i) that the pasteurized or ultra-pasteurized milk and dairy products in violation of the quality standard are suspended from sale; (ii) why the pasteurized or ultra-pasteurized milk and dairy products are

suspended from sale; (iii) that the permit holder must contact the State Regulatory Authority when corrections have been made to bring their his pasteurized or ultra-pasteurized milk and milk products into compliance before any action will be taken to reinstate sales of his suspended pasteurized or ultra-pasteurized milk and milk products; and (iv) that his pasteurized or ultra-pasteurized milk and milk products will not be reinstated for sale until laboratory analysis determine that the pasteurized or ultra-pasteurized milk and milk products are in compliance with the quality standards.

J. H. Whenever three out of the last five consecutive cooling temperature checks or bacteria counts taken on separate days from a grade A permit holder's dairy plant exceed the standard established for grade A bulk shipped heat-treated milk products, the State Regulatory Authority shall send a written suspension notice to the permit holder or to the person identified by the permit holder to receive sample reports and official correspondence. The suspension notice shall inform the grade A dairy plant permit holder that: (i) the permit holder's grade A dairy plant permit is suspended and (ii) should the grade A dairy plant permit holder desire to have his grade A dairy plant permit reinstated, he must make his request in writing to the State Regulatory Authority detailing the actions he has taken and will take to avoid violating the standard he exceeded for grade A bulk shipped heat-treated milk products in the future, establishing a date and time by which these actions will be fully implemented and stating the reasons why his request should be granted.

2VAC5-490-34. Inspection of dairy farms, milk plants, condensing plants, and drying plants; HACCP audits of dairy plants.

- A. No person who operates a dairy farm, milk plant, receiving station, transfer station, milk tank truck cleaning facility, condensing plant, or drying plant within the Commonwealth may hold a grade A permit until his dairy farm, milk plant, receiving station, transfer station, milk tank truck cleaning facility, condensing plant, or drying plant has been inspected and approved by the State Regulatory Authority.
- B. After permitting, each person's dairy farm, milk plant, receiving station, transfer station, milk tank truck cleaning facility, condensing plant, or drying plant within the Commonwealth shall be inspected as often as at the minimum frequency as outlined in Section 5 of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision," or at a greater frequency as deemed necessary by the State Regulatory Authority deems is necessary.
- C. After permitting, each person's milk plant, receiving station, transfer station, milk tank truck cleaning facility, condensing plant, or drying plant within the Commonwealth participating in the voluntary HACCP program shall be HACCP audited as often as at the minimum frequency as outlined in Section 5 of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision," or at a greater frequency as

<u>deemed necessary by</u> the State Regulatory Authority deems is necessary.

2VAC5-490-35. The examination of milk and milk products.

- A. The State Regulatory Authority shall collect during any consecutive six months at least four samples of raw milk, collected in at least four separate months, except when three months show a month containing two sampling dates separated by at least 20 days for pasteurization, ultrapasteurization, or aseptic processing and packaging, or retort processed after packaging, from each dairy farm that holds a grade A permit.
- B. After receipt of the milk by the milk plant and prior to pasteurization, ultra-pasteurization, of aseptic processing and packaging, or retort processed after packaging the State Regulatory Authority shall collect during any consecutive six months at least four samples of raw milk, collected in at least four separate months, except when three months show a month containing two sampling dates separated by at least 20 days for pasteurization, ultra-pasteurization, of aseptic processing and packaging, or retort processed after packaging, from each milk plant located within the Commonwealth that holds a grade A permit.
- C. The State Regulatory Authority shall collect during any consecutive six-month period at least four samples of each heat-treated, pasteurized, ultra-pasteurized, and aseptically processed milk product, flavored milk, flavored reduced fat milk or low-fat milk, flavored nonfat milk, each fat level of reduced fat or low-fat milk, and milk products collected in at least four separate months, except when three months show a month containing two sampling dates separated by at least 20 days, from each milk plant located in the Commonwealth and holding a grade A permit.
- D. All pasteurized and ultra-pasteurized milk and milk products required sampling and testing shall be conducted only when there are test methods available that are validated by FDA and accepted by NCIMS. Milk and milk products that do not have validated and accepted methods are not required to be tested. Aseptically processed and packaged milk and milk products and retort processed after packaged milk and milk products shall be exempt from the sampling and testing requirements of subsection C of this section.
- D. E. The State Regulatory Authority shall, except when the production is not on a yearly basis, during each month collect from each milk condensing plant, milk drying plant, whey condensing plant, or whey drying plant holding a grade A permit at least one sample of raw milk for pasteurization, after receipt of the milk by the plant and before pasteurization, and at least one sample of each grade A condensed milk product, grade A dry milk product, grade A condensed whey, and grade A dry whey manufactured. If the production of grade A dry milk products or grade A dry whey is not on a yearly basis, the State Regulatory Authority shall

collect at least five samples within a continuous production period.

- E. F. The State Regulatory Authority may collect samples of milk and milk products as it deems necessary from retail establishments selling milk or milk products to determine compliance with 2VAC5-490-20, 2VAC5-490-40, 2VAC5-490-50, and 2VAC5-490-80. Each person who operates the retail establishment shall furnish the State Regulatory Authority, upon the request of the State Regulatory Authority, with the names of all distributors from whom the person has obtained milk or milk products.
- F. G. The State Regulatory Authority shall provide the remaining portion of the original raw milk sample from each grade A dairy farm which that has been screened positive for animal drug residues by a milk plant, receiving station, or transfer station to the grade A dairy farms' farm's milk marketing organization upon request.
- G. H. Each grade A permit holder operating a milk plant within the Commonwealth shall provide to the State Regulatory Authority laboratory determinations of the quantity of vitamin A and vitamin D present in each of the milk plant's milk and milk products to which vitamin A or vitamin D has been added. Each grade A permit holder who operates a milk plant shall provide these laboratory determinations at least annually from a laboratory certified to determine the amount of vitamin A and vitamin D in milk and milk products under the requirements established in "Evaluation of Milk Laboratories," 2009 2011 revision, available from the Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Field Programs, Division of HACCP, Laboratory Quality Assurance Branch, HFH-450, 6502 South Archer Road, Summit-Argo, Illinois 60501, USA. Each grade A permit holder who operates a milk plant shall pay for the cost of the laboratory determinations.

2VAC5-490-36. Drug residue monitoring, farm surveillance and follow up.

- A. Each grade A permit holder operating a milk plant, receiving station, or transfer station shall:
 - 1. Prior to processing any raw milk from bulk tanks on farms, test for residues of beta lactam drugs all raw milk that the milk plant, receiving station, or transfer station receives for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging;
 - 2. Test each shipment of bulk tank raw milk or a raw milk supply that has not been transported in bulk milk pickup tankers received for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging by screening tests methods which that have been Association of Official Analytical Chemists (AOAC) reviewed and Food and Drug Administration (FDA) accepted. In lieu of any test specified in this subdivision a grade A permit holder may use AOAC first-action and

- AOAC final-action tests methods. Nothing in this subdivision shall be deemed to require the testing of individual raw milk samples prior to processing collected from each grade A dairy farm included in any shipment of bulk tank raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging;
- 3. Implement a random-sampling program when the Commissioner of the Food and Drug Administration determines that a potential problem exists with animal drug residues or other contaminants in the milk supply. Each grade A permit holder operating a milk plant, receiving station, or transfer station shall analyze the samples for the contaminant by a method determined by FDA to be effective in determining compliance with actionable levels or established tolerances. Each grade A permit holder operating a milk plant, receiving station, or transfer station shall continue the random-sampling program until such time that the Commissioner of the Food and Drug Administration is reasonably assured that the problem has been corrected. The sampling program shall represent and include during any consecutive six months, at least four samples collected in at least four separate months, except when three months show a month containing two sampling dates separated by at least 20 days.;
- 4. Retain each sample found to be positive for drug residues for a period of 120 hours after the sample test result is positive for drug residues for the use of the State Regulatory Authority unless directed otherwise by a representative of the State Regulatory Authority;
- 5. Abstain from selling or offering for sale any pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, milk product, or condensed and dry milk product processed from raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging before results of drug screening tests are available and which raw milk later tests positive for drug residues. All of the grade A permit holder's milk commingled with any raw milk which that tests positive for drug residues shall be deemed adulterated. Any grade A permit holder operating a milk plant, receiving station, or transfer station shall report to the State Regulatory Authority instances of adulteration immediately;
- 6. Record the results of tests on samples of raw milk and retain such records for a period of six months; report records of all results of tests on samples of raw milk to the State Regulatory Authority by the fifteenth day of each month for the preceding month; and maintain and make available to the State Regulatory Authority for inspection and review at the permitted facility records of results of tests on samples of raw milk. Each record of results of tests on samples of raw milk required by this subdivision shall include:

- a. The analyst's signature, date, time, and place where the test was performed;
- b. The registration identification of each pickup tanker of bulk raw milk or raw milk sampled;
- c. The test method used:
- d. The Interstate Milk Shipper Bulk Tank Unit identification number of each grade A milk supply included on each pickup tanker of bulk raw milk tested; and
- e. A statement as to whether the test results were positive or negative. If the results were positive, the grade A permit holder shall also record:
- (1) The identity of each producer contributing to the load from which the positive sample of raw milk was taken;
- (2) The name of the person notified at the State Regulatory Authority of the positive test results;
- (3) The date and time of day the person at the State Regulatory Authority was notified of the positive test results; and
- (4) The method of notification of the State Regulatory Authority;
- 7. Immediately notify the State Regulatory Authority and the milk marketing cooperative or broker of any shipment of bulk tank raw milk for pasteurization, ultrapasteurization, or aseptic processing and packaging, or retort processed after packaging milk and milk products when the shipment of bulk tank raw milk is found to be positive for drug residues. Nothing in this subdivision shall be deemed to include individual raw milk samples collected from each grade A dairy farm included in any shipment of bulk tank raw milk for pasteurization, ultrapasteurization, or aseptic processing and packaging, or retort processed after packaging milk and milk products;
- 8. Test each producer sample of raw milk to determine the farm of origin represented by any sample of raw milk which that tests positive for drug residues and immediately report to the State Regulatory Authority the result of each producer sample representing the raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging milk and milk products found to be positive for drug residues;
- 9. Provide by facsimile machine or other electronic means to the Virginia Department of Agriculture and Consumer Services copies of load manifests, producer weight tickets, laboratory worksheets where the results of laboratory tests are originally recorded, and records from electronic readers documenting the results for samples tested for all positive loads; and
- 10. Immediately discontinue receiving shipments of raw milk from the grade A permit holder whose milk tests positive for drug residues, until subsequent tests are no longer positive for drug residues.

- B. Each grade A dairy farm permit holder's milk marketing cooperative or milk marketing agent shall be responsible for the collection and testing of follow-up milk samples for animal drug residues required for permit reinstatement and resumption of milk shipment from the dairy farm each time the grade A dairy farm permit holder's milk test positive for animal drug residues.
- C. Each grade A dairy farm permit holder's milk marketing cooperative or milk marketing agent shall comply with the following when following up on a producer's dairy farm after a positive animal drug residue:
 - 1. Only person's persons who hold valid permits to weigh, sample, and collect milk issued by the Virginia Department of Agriculture and Consumer Services shall collect and deliver follow-up milk samples to laboratories for official testing for the purpose of permit reinstatement and the resumption of milk shipments from the dairy farm;
 - 2. Reports of laboratory testing shall be provided from officially designated laboratories for each milk sample tested for animal drug residues and shall include the following information:
 - a. The name of the grade A dairy farm permit holder;
 - b. The patron number of the grade A dairy farm permit holder:
 - c. The date, time, and temperature of the milk sample when collected:
 - d. The name of the person who collected the milk sample;
 - e. The name of the test method used to test the milk sample; and
 - f. The test result for the milk sample; and
 - 3. Only confirmation test methods approved under M-I-96-10 (Revision #7) (Revision #8) dated January 4, 2010 March 22, 2012, and titled "Drug Residue Test Methods for Confirmation of Presumptive Positive Results and Initial Producer Trace Back" may be used for follow-up milk sample testing.

2VAC5-490-37. Laboratory certification.

A. Each grade A permit holder operating a dairy plant that receives any milk that could require load confirmation or producer trace-back as a result of a positive animal drug residue on a load of milk delivered at the plant shall provide to the Virginia Department of Agriculture and Consumer Services results of animal drug residue tests from an officially designated laboratory. Each officially designated laboratory shall maintain a listing in the IMS List – Sanitation Compliance and Enforcement Ratings of Interstate Milk Shippers as an approved milk laboratory certified to test load and producer samples. All laboratory results from officially designated laboratories shall be reported to the Virginia Department of Agriculture and Consumer Services within six hours of the initial presumptive positive result at the plant.

B. Each officially designated laboratory shall comply with the requirements contained in the "Evaluation of Milk Laboratories, 2009 2011 revision" for certification and listing in the "IMS List – Sanitation Compliance and Enforcement Ratings of Interstate Milk Shippers."

2VAC5-490-39. Records of milk purchased or sold; list of sources.

Each grade A permit holder who operates a milk plant, receiving station, or transfer station, and any person who distributes milk or milk products shall furnish the State Regulatory Authority upon request:

- 1. A true statement of the quantities of milk and milk products of each grade purchased or sold by the milk plant, receiving station, transfer station, or distributor of milk or milk product; and
- 2. A list of all sources from which the milk plant, receiving station, transfer station, or distributor of milk or milk product, received milk or milk products.

2VAC5-490-39.3. Commingling of milk from different species prohibited.

No person may produce, provide, manufacture in, sell, offer for sale, or store in the Commonwealth, or, bring, send, or receive into the Commonwealth, any milk, milk product, or condensed and dry milk product for use in the commercial preparation of grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk or milk products, any part of which is a combination of the milk from any two or more species of mammal.

Part V Labeling

2VAC5-490-40. Labeling.

No person may produce, provide, manufacture, sell, offer for sale, or store in the Commonwealth or, bring <u>into</u>, send into, or receive into the Commonwealth any milk, milk product, or condensed and dry milk product for use in the commercial preparation of grade A pasteurized, ultra-pasteurized, or aseptically processed <u>and packaged</u>, or retort processed <u>after packaged</u> milk or milk products which that are not labeled in compliance with the following:

- 1. Each grade A permit holder's bottles, containers, and packages enclosing any milk or milk products shall be labeled in accordance with the requirements of the Federal Food, Drug, and Cosmetic Act, as amended; the Nutrition Labeling and Education Act (NLEA) of 1990, and regulations developed thereunder; and the Food Allergen Labeling and Consumer Protection Act of 2004;
- 2. The grade A permit holder shall label or mark all bottles, containers, and packages enclosing any milk or milk products with:

- a. The name of a defined milk product, if there is a definition, and if there is no definition, a name that is not false or misleading;
- b. The word "reconstituted" or "recombined" if the milk product is made by reconstitution or recombination;
- c. The term "grade A" located on the exterior of the package on the principal display panel, the secondary or informational panel, or the cap or cover;
- d. The identity of the plant where the grade A permit holder's milk or milk product is pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged by specifying:
- (1) The street address, city, state, and zip code of the plant; or
- (2) The code assigned the plant under the National Uniform Coding System for Packaging Identification of Milk and Milk Product Processing Plants:
- e. In the case of concentrated milk or concentrated milk products the volume or proportion of water to be added for recombining;
- f. The name of the milk product that the concentrated milk product will produce, which name shall be preceded by the term "concentrated." In the case of flavored milk or flavored reconstituted milk, the grade A permit holder shall substitute the name of the principal flavor for the word "flavored":
- g. In the case of aseptically processed <u>and packaged</u> milk and milk products <u>or retort processed after packaged milk and milk products</u>, the words "keep refrigerated after opening";
- h. In the case of aseptically processed and packaged milk or milk products, the term "UHT" ultra-high-temperature;
- i. The term "ultra-pasteurized" if the milk or milk product has been ultra-pasteurized;
- j. The term "goat" preceding the name of the milk or milk product when the milk or milk product is goat milk or is made from goat milk;
- k. The term "sheep" preceding the name of the milk or milk product when the milk or milk product is sheep milk or is made from sheep milk;
- l. The term "water buffalo" preceding the name of the milk or milk product when the milk or milk product is water buffalo milk or is made from water buffalo milk;
- m. As in the case of cow's milk, goat's milk, sheep's milk, and water buffalo's milk, the common or usual name of the mammal from which the milk was obtained shall precede the name of the milk, milk product, condensed milk, condensed milk product, dry milk, or dry milk product;
- n. The information appearing on the label of any bottle, container, or package of milk or milk product shall

contain no marks, pictures, graphics, <u>endorsements</u>, or words which that are misleading;

- o. The "pull date" which shall not interfere with the legibility of other labeling required for the milk or milk product and shall be expressed by: the first three letters in the name of the month, followed by or preceded by the numeral or numerals constituting the calendar date after which the product shall not be sold or expressed numerically by the number of the month followed by the number of the day. For example, June 1 shall be expressed "JUN 1," "1 JUN," "06 01," or "06-01";
- p. The grade A permit holder who operates a milk plant and offers for sale milk or milk product within the Commonwealth shall file and certify with the State Regulatory Authority the maximum number of days after manufacturing or processing the grade A permit holder's milk or milk products which that will be used to determine the "pull date." The grade A permit holder shall establish a "pull date" that under normal storage the milk or milk product meets for a minimum of 96 hours after the "pull date," standards set by this chapter;
- q. No person may sell or offer for sale any packaged grade A pasteurized milk, grade A pasteurized milk product, or milk product after the date of the "pull date" on the package;
- r. No person may sell or offer for sale any grade A pasteurized milk, grade A pasteurized milk product, or milk product in a package that does not bear the "pull date";
- s. Nothing in this chapter shall apply to containers of grade A pasteurized milk, grade A milk products, or milk products which that are not to be sold in the Commonwealth; and
- t. In the case of condensed or dry milk products, the label shall also contain (i) the identity of the State Regulatory Authority issuing the processing plant's permit; (ii) the identity of the distributor if the condensed or dry milk products are distributed by a party other than the processing plant, the name and address of the distributor shall also be shown by a statement such as "distributed by"; (iii) the code or lot number identifying the contents with a specific date, run, or batch of the product; and (iv) a statement of the quantity of the contents of the container.

Part VI Standards for Milk and Milk Products

2VAC5-490-50. Quality standards for milk and milk products.

A. No person may produce, provide, manufacture, sell, offer for sale, or store in the Commonwealth, or, bring, send, or receive into the Commonwealth, any milk, milk product, condensed milk product, or dry milk product for use in the commercial preparation of grade A pasteurized, ultra-

pasteurized, or aseptically processed milk or milk products which that do not comply with the following:

- 1. Grade A raw milk for pasteurization or ultra-pasteurization of, aseptic processing and packaging, or retort processed after packaging and all grade A pasteurized, ultra-pasteurized, of aseptically processed and packaged, or retort processed after packaged milk or milk products shall be produced, processed, manufactured and pasteurized, of ultra-pasteurized, of aseptically processed and packaged, or retort processed after packaged to conform with the following chemical, physical, bacteriological, somatic cell, eryoscope, and temperature standards, and with the requirements of this chapter;
- 2. No process or manipulation other than (i) pasteurization; (ii) ultra-pasteurization; (iii) aseptic processing; or (iv) and packaging; (iv) retort processed after packaging; or (v) processing methods integral with pasteurization, ultrapasteurization, or aseptic processing and packaging, or retort processed after packaging; and refrigeration may be applied to milk or milk products for the purpose of removing or deactivating microorganisms provided that filtration, bactofugation, or filtration and bactofugation may be performed in the plant in which the milk or milk product is pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged. Nothing in this chapter is deemed to prohibit any grade A permit holder who operates a milk plant from preparing bulk shipments of cream, skim milk, reduced fat or lowfat milk labeled as "heat treated"; if the raw milk, raw cream, skim milk, reduced fat or lowfat milk is heated, one time, to a temperature warmer than 125°F but cooler than 161°F for separation purposes. In the case of heat treated cream, the cream may be further heated to less than 166°F in a continuing heating process and immediately cooled to 45°F or less when necessary for enzyme deactivation (such as lipase reduction) for a functional reason:
- 3. Grade A raw milk <u>and milk products</u> for pasteurization, ultra-pasteurization, or aseptic processing <u>and packaging</u>, <u>or retort processed after packaging</u> shall comply with the following standards:
 - a. The temperature of the raw milk shall be cooled to 40°F or cooler, but not frozen, within two hours after milking and the temperature after the first or any subsequent milking shall not be warmer than 50°F;
 - b. The bacteria count of the raw milk shall not exceed 100,000 bacteria per milliliter prior to commingling with any other milk; and the bacteria count of the raw milk that is commingled shall not exceed 300,000 bacteria per milliliter prior to pasteurization;
 - c. Raw milk shall freeze at or below -0.530° Hortvet;
 - d. Raw milk shall have no positive results of tests for drug residues by detection methods reported to the State Regulatory Authority by official laboratories, officially

- designated laboratories, milk plants, receiving stations, or transfer stations;
- e. The somatic cell count of raw cow's milk, <u>raw</u> water buffalo's milk, or raw sheep's milk shall not exceed 750,000 somatic cells per milliliter. The somatic cell count of raw goat's milk shall not exceed 1,500,000 somatic cells per milliliter;
- f. Raw milk shall not exceed the actionable level, tolerance level, or safe level for any chemical residue or pesticide residue specified in: 40 CFR Part 180 and 21 CFR Parts 70, 71, 73, 74, 80, 82, 130, 131, 133, 170, 172, 173, 174, 175, 176, 177, 178, 189, 556, 570, 573, 589. In the event that no actionable level, tolerance level, or safe level for a chemical residue or pesticides residue has been established in 40 CFR Part 180 and 21 CFR Parts 70, 71, 73, 74, 80, 82, 130, 131, 133, 170, 172, 173, 174, 175, 176, 177, 178, 189, 556, 570, 573, 589, the tolerance level shall be deemed to be zero; and
- g. Raw milk shall not contain aflatoxin residues equal to or greater than 0.50 parts per billion as determined by the Charm II aflatoxin test or other equivalent method:
- 4. Grade A pasteurized or ultra-pasteurized, milk and milk products shall comply with the following standards:
 - a. The temperature of milk products shall be cooled to 45°F or cooler (but not frozen) and maintained at that temperature;
 - b. The bacteria count for any milk or milk products (except <u>acidified or cultured products</u>) <u>milk or milk products</u>, eggnog, cottage cheese, and other milk or milk <u>products as identified in FDA M-a-98</u>) shall not exceed 20,000 bacteria per milliliter;
 - c. Except for commingled milk shipped in a transport tank the coliform count for any milk or milk products shall not exceed 10 coliform organisms per milliliter. Commingled milk shipped in a transport tank shall not exceed 100 coliform organisms per milliliter;
 - d. The phenol value of test samples of pasteurized finished product shall be no greater than the maximum specified for the particular product as determined and specified by: (i) any phosphatase test method prescribed in the Official Methods of Analysis, 18th 19th Edition, 2005 2012, published by the Association of Official Analytical Chemists; (ii) the Fluorometer test method; (iii) the Charm ALP test method; or (iv) other equivalent method as determined by the Virginia Department of Agriculture and Consumer Services. A phenol value greater than the maximum specified for the particular product shall mean that the product was not properly pasteurized. A phenol value less than the maximum specified for the particular product shall not be deemed to mean that the product was properly pasteurized, unless there is evidence of proper pasteurization equipment in conformance with this chapter and records to determine

- an adequate pasteurization process has been completed for each separate batch or lot of milk, milk product, condensed milk, condensed milk product, dry milk, or dry milk product;
- e. Milk or milk products shall have no positive results of tests for drug residues by detection methods reported to the State Regulatory Authority by official laboratories, officially designated laboratories, milk plants, receiving stations, or transfer stations;
- f. Milk or milk products shall not exceed the actionable level, tolerance level, or safe level for any chemical residue or pesticide residue specified in: 40 CFR Part 180 and 21 CFR Parts 70, 71, 73, 74, 80, 82, 130, 131, 133, 170, 172, 173, 174, 175, 176, 177, 178, 189, 556, 570, 573, 589. In the event that no actionable level, tolerance level, or safe level for a chemical residue or pesticides residue has been established in 40 CFR Part 180 and 21 CFR Parts 70, 71, 73, 74, 80, 82, 130, 131, 133, 170, 172, 173, 174, 175, 176, 177, 178, 189, 556, 570, 573, 589, the tolerance level shall be deemed to be zero; and
- g. Milk or milk products shall not contain aflatoxin residues equal to or greater than 0.50 parts per billion as determined by the Charm II aflatoxin test or other equivalent method:
- 5. <u>Grade A pasteurized concentrated (condensed) milk or milk product shall comply with the following standards:</u>
 - a. The temperature of milk products shall be cooled to 45°F or cooler (but not frozen) and maintained thereat unless drying is commenced immediately after condensing;
 - b. Except for commingled milk shipped in a transport tank, the coliform count for any milk or milk product shall not exceed 10 coliform organisms per gram. Commingled milk shipped in a transport tank shall not exceed 100 coliform organisms per gram;
- <u>6.</u> Grade A aseptically processed <u>and packaged</u> milk and milk products shall comply with the following standards:
 - a. Aseptically processed <u>and packaged</u> milk and milk products shall be commercially sterile;
 - b. Aseptically processed <u>and packaged</u> milk and milk products shall have no positive results of tests for drug residues by detection methods reported to the State Regulatory Authority by official laboratories, officially designated laboratories, milk plants, receiving stations, or transfer stations;
 - c. Aseptically processed <u>and packaged</u> milk and milk products shall not exceed the actionable level, tolerance level, or safe level for any chemical residue or pesticide residue specified in 40 CFR Part 180 and 21 CFR Parts 70, 71, 73, 74, 80, 82, 130, 131, 133, 170, 172, 173, 174, 175, 176, 177, 178, 189, 556, 570, 573, 589. In the event that no actionable level, tolerance level, or safe level for a chemical residue or pesticides residue has been

- established in 40 CFR Part 180 and 21 CFR Parts 70, 71, 73, 74, 80, 82, 130, 131, 133, 170, 172, 173, 174, 175, 176, 177, 178, 189, 556, 570, 573, 589, the tolerance level shall be deemed to be zero; and
- d. Aseptically processed <u>and packaged</u> milk and milk products milk shall not contain aflatoxin residues equal to or greater than 0.05 parts per billion;
- 6. 7. Grade A nonfat dry milk and dry milk or milk products shall comply with the following standards:
 - a. The butterfat content shall not be greater than 1-1/4%;
 - b. The moisture content shall not be greater than 4.0%;
 - c. The titratable acidity shall not exceed 0.15%;
 - d. The solubility index shall not exceed 1-1/4 milliliters;
 - e. a. The bacteria count shall not exceed 30,000 10,000 bacteria per gram; and
 - f. b. The coliform count shall not exceed 10 coliform organisms per gram; and
 - g. The amount of scorched particles shall not exceed 15 particles per gram.
- 7. 8. Grade A whey for condensing or drying shall be maintained at a temperature of 45°F (7°C) or less, or 135°F (57°C) or greater; provided that, acid-type whey with a titratable acidity of 0.40% or above or a pH of 4.6 or below shall be exempt for the requirements of this subdivision;
- 8. 9. Grade A pasteurized condensed whey and whey products shall be cooled to 50°F (10°C) or less during crystallization and within 72 hours of condensing. The coliform count of grade A pasteurized condensed whey and whey products shall not exceed 10 coliform organisms per gram; and
- 9. 10. The coliform count of grade A dry whey, grade A dry whey products, grade A dry buttermilk, and grade A dry buttermilk products shall not exceed 10 coliform organisms per gram.
- B. Sanitation requirements for grade A raw milk.
- 1. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall comply with:
 - a. The following administrative procedures contained in the "Grade "A" Pasteurized Milk Ordinance, 2009 2013 Revision": Section 4. Labeling; Section 7. Standards for Grade "A" Raw Milk for Pasteurization, Ultra-Pasteurization or Aseptic Processing, Items 1r, 2r, 3r, 4r, 5r, 6r, 7r, 8r, 9r, 10r 10r(1), 10r(2), 11r, 12r, 13r(1), 13r(2), 13r(4), 13r(5) 13r, 14r, 15r, 16r, 17r, 18r(2), 18r(3), 19r; Section 8. Animal Health; Section 10. Transferring; Delivery Containers; Cooling; and Section 13. Personnel Health;

- b. The following appendices contained in the "Grade "A" Pasteurized Milk Ordinance, 2009 2013 Revision": Appendices A, B, C, D, F, G, H, N, Q, and R; and
- c. Item 1r. Abnormal milk. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Milk last or with separate equipment cows, sheep, goats, water buffalo, or other mammals which that show evidence of the secretion of abnormal milk in one or more quarters (based upon bacteriological, chemical, or physical examination) and discard the milk obtained from cows, sheep, goats, water buffalo, or other mammals which that show evidence of the secretion of abnormal milk in one or more quarters based upon bacteriological, chemical, or physical examination; and
- (2) Milk last or with separate equipment cows, sheep, goats, water buffalo, or other mammals treated with, or which that have consumed, chemical, medicinal, or radioactive agents which that are capable of being secreted in the milk and which that may be deleterious to human health; and dispose of in a manner which that will not pollute the environment or any human food the milk obtained from cows, sheep, goats, water buffalo, or other mammals treated with, or which that have consumed, chemical, medicinal, or radioactive agents which that are capable of being secreted in the milk and which that may be deleterious to human health;
- d. Item 2r. Milking barn, stable, or parlor—; construction. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Provide on the person's dairy farm a milking barn, stable, or parlor in which the milking herd shall be housed during milking time;
- (2) Provide on the grade A permit holder's dairy farm a milking barn, stable, or parlor, which, milking barn, stable, or parlor shall:
- (a) Have floors constructed of concrete or equally impervious material;
- (b) Have walls and ceiling which that are smooth, painted, or finished in an approved manner, and in good repair and have a ceiling which is dust tight;
- (c) Have separate stalls or pens for horses, calves, and bulls:
- (d) Have natural or artificial light, well distributed for day or night milking;
- (e) Have sufficient air space and air circulation to prevent condensation and excessive odors;

- (f) Have dust-tight covered boxes or bins, or separate storage facilities for ground, chopped, or concentrated feed; and
- (g) Not be overcrowded; and
- (3) Provide and use only an "automatic milking installation" that complies with the requirements of Appendix Q of the "Grade "A" Pasteurized Milk Ordinance, 2009 2013 Revision" if the person milks any cows, goats, sheep, water buffalo, or other mammals (except humans) using robots or other automated means in the absence of any human;
- e. Item 3r. Milking barn, stable, or parlor-; cleanliness. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Keep the interior of the milking barn, stable, or parlor clean;
- (2) Keep the floors, walls, <u>ceilings</u>, windows, pipelines, and equipment in the milking barn, stable, or parlor free of filth or litter and clean;
- (3) Keep swine and fowl out of the milking barn, stable, and parlor; and
- (4) Keep surcingles, belly straps, milk stools, and antikickers clean and stored above the floor; and
- (5) Store feed in a manner that will not increase the dust content of the air or interfere with the cleaning of the floor;
- f. Item 4r. Cow yard, sheep yard, goat yard, water buffalo yard, or other milking mammal yard. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Provide and maintain the cow yard, sheep yard, goat yard, water buffalo yard or other milking mammal yard, to be graded and drained, and to have no standing pools of water or accumulations of organic wastes;
- (2) In the cow loafing, goat loafing, sheep loafing, water buffalo loafing, or other milking mammal loafing, cattle-housing, sheep-housing, goat-housing, water buffalo-housing, or other milking mammal-housing areas remove cow droppings, sheep droppings, goat droppings, water buffalo droppings, and other milking mammal droppings and remove soiled bedding or add clean bedding at sufficiently frequent intervals to prevent the soiling of the cow's, sheep's, goat's, water buffalo's, or other milking mammal's udder and flanks;
- (3) Assure that waste feed does not accumulate in the goat yard, cow yard, sheep yard, water buffalo yard, other milking mammal yard, cow loafing, sheep loafing, goat loafing, water buffalo loafing, other milking mammal loafing, cattle-housing, sheep-housing, goat-

- housing, water buffalo-housing, or other milking mammal-housing area;
- (4) Maintain any manure packs so as to be properly drained and so as to provide a reasonably firm footing; and
- (5) Keep swine and fowl out of the cow yard, sheep yard, goat yard, water buffalo yard, other milking mammal yard, cow loafing, sheep loafing, goat loafing, water buffalo loafing, other milking mammal loafing, cattle-housing, sheep-housing, goat-housing, water buffalo-housing, or other milking mammal-housing area-;
- g. Item 5r. Milkhouse or room-; construction and facilities. Each who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Provide a milkhouse or milkroom of sufficient size in which the cooling, handling, and storing of milk and the washing, sanitizing, and storing of milk containers and utensils shall be conducted except as provided under subdivision 1 n of this subsection;
- (2) Provide a milkhouse with a smooth floor, constructed of concrete or equally impervious material graded to drain, and maintained in good repair;
- (3) Dispose of in a sanitary manner all liquid waste generated in the milkhouse:
- (4) Provide one or more floor drains in the milkhouse, which floor drains shall be accessible, and if connected to a sanitary sewer system trapped;
- (5) Provide in the milkhouse walls and ceilings constructed of a smooth material, in good repair, well painted, or finished in an equally suitable manner;
- (6) Provide adequate natural or artificial light and ventilation in the milkhouse;
- (7) Use the milkhouse for no other purpose than milkhouse operations;
- (8) Provide no direct opening from the milkhouse into any barn, stable, or into any room used for domestic purposes, other than a direct opening between the milkhouse and milking barn, stable, or parlor provided with a tight-fitting, self-closing, solid door, which door has been hinged to be single or double acting. Screened vents in the wall between the milkhouse and a breezeway, which separates the milkhouse from the milking parlor, are permitted, provided animals are not housed within the milking facility;
- (9) Provide in the milkhouse water under pressure which has been piped into the milkhouse;
- (10) Provide in the milkhouse a two-compartment wash vat and adequate hot water heating facilities;
- (11) Except as provided for under subdivision 1 g (12) of this subsection provide a suitable shelter for the receipt

- of milk when the grade A permit holder uses a transportation tank for the cooling or storage of milk on the grade A permit holder's dairy farm, which shelter adjacent to, but not a part of, the milkroom; and with the requirements of the milkroom shall comply with respect to construction, light, drainage, insect and rodent control, and general maintenance. In addition to providing a suitable shelter as required by this subsection, the grade A permit holder shall:
- (a) Install an accurate, accessible temperature-recording device in the milk line used to fill the transportation tank downstream from an effective cooling device capable of cooling the milk to 40°F or less before the milk enters the transportation tank. Electronic records that comply with the applicable provisions as referred to in Sections IV and V of Appendix H of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision," with or without hard copy, may be used in place of temperature-recording records;
- (b) Install an indicating thermometer as close as possible to the temperature-recording device in the milk line used to fill the transportation tank to be used for verification of recording temperatures, which indicating thermometer shall:
- (i) Have a temperature span of not less than 50°F including normal storage temperatures plus or minus 5°F, with an extension of the scale on either side permitted and graduated in not more than 2°F divisions;
- (ii) Have temperature scale divisions spaced not less than 0.0625 inches apart between 35°F and 55°F;
- (iii) Have an accuracy within plus or minus 2°F throughout the scale range; and
- (iv) Have the stem fitting installed in a pressure-tight seat or other sanitary fitting with no threads exposed;
- (c) Provide an effective means to agitate the transport tank or an approved in-line sampling device in order to collect a representative milk sample;
- (12) If the State Regulatory Authority determines conditions exist whereby the milk transport tank may be adequately protected and sampled without contamination, a shelter need not be provided if the grade A permit holder:
- (a) Provides a means to make all milk hose connections to the transport tank accessible from within the milkhouse;
- (b) Provides a means to completely protect the milk hose connection to the transport tank from the outside environment. With approval of the State Regulatory Authority, the direct loading of milk from the milkhouse to the milk tank truck may be conducted through a properly designed hose port that adequately protects the milkhouse opening or by stubbing the milk transfer and associated CIP cleaned lines outside the milkhouse wall

- in accordance with Item 5r, Administrative Procedure #15, of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision";
- (c) Ensures he utilizes only milk transport tanks the manholes of which have been sealed after cleaning and sanitizing are utilized;
- (d) Ensures he utilizes only milk transport tanks that have been washed and sanitized at permitted dairy plants or a permitted milk tank truck cleaning facilities acceptable to the State Regulatory Agency are utilized;
- (e) Installs an accurate, accessible temperature-recording device in the milk line used to fill the transportation tank downstream from an effective cooling device capable of cooling the milk to 40°F or less before the milk enters the transportation tank. Electronic records that comply with the applicable provisions as referred to in Sections IV and V of Appendix H of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision," with or without hard copy, may be used in place of temperature-recording records;
- (f) Installs an indicating thermometer as close as possible to the temperature-recording device in the milk line used to fill the transportation tank to be used for verification of recording temperatures, which indicating thermometer shall:
- (i) Have a temperature span of not less than 50° F including normal storage temperatures plus or minus 5° F, with an extension of the scale on either side permitted and graduated in not more that than 2° F divisions;
- (ii) Have temperature scale divisions spaced not less that than 0.0625 inches apart between 35°F and 55°F;
- (iii) Have an accuracy within plus or minus 2°F throughout the scale range; and
- (iv) Have the stem fitting installed in a pressure-tight seat or other sanitary fitting with no threads exposed;
- (g) Provides an effective means to agitate the transport tank or an approved in-line sampling device in order to collect a representative milk sample; and
- (h) Provides a self-draining concrete or equally impervious surface on which the transport tank can be parked during filling and storage;
- h. Item 6r. Milkhouse or milkroom-; cleanliness. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Keep clean the floors, walls, ceilings, windows, tables, shelves, cabinets, wash vats, nonproduct contact surfaces of milk containers, utensils, equipment, and other milkroom equipment in the milkroom;
- (2) Place in the milkroom only those articles directly related to milkroom activities; and

- (3) Keep the milkroom free of trash, animals, and fowl;
- i. Item 7r. Toilets. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Provide on the person's grade A dairy farm one or more toilets, which shall be conveniently located and properly constructed, and operated, and maintained in a sanitary manner;
- (2) Prevent the access of flies to the waste contained in or from the toilet:
- (3) Prevent the waste contained in or from the toilet from polluting the soil surface or contaminating any water supply; and
- (4) Assure that there is no direct opening from the toilet into any milkroom;
- j. Item 8r. Water supply. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Provide water for milkhouse and milking operations from a water supply properly located, protected, and operated. The water supply shall be easily accessible, adequate, and of a safe, sanitary quality, and meet the construction standards of Appendix D of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision";
- (2) Assure that any well casing which is part of a water supply that provides water for any milkhouse or milking operation is not located closer to any source of contamination which may contaminate the water supply than is specified as follows:
- (a) No grade A permit holder may locate a well casing closer than 10 feet to a pit;
- (b) No grade A permit holder may locate a well casing closer than 10 feet to any sewer pipe, floor drain, or other pipe which may back up;
- (c) No grade A permit holder may locate a well easing closer than 50 feet to any above ground gas, oil, petroleum, or chemical storage tank;
- (d) No grade A permit holder may locate a well casing closer than 50 feet to any accumulated animal manure;
- (e) No grade A permit holder may locate a well casing closer than 50 feet to any area to which livestock has access; or animal holding area, feedlot, or loafing area on dirt:
- (f) No grade A permit holder may locate a well casing closer than 50 feet to any pit not drained to the surface of the ground. Nothing in this requirement shall apply to a residential basement;
- (g) No grade A permit holder may locate a well casing closer than 100 feet to any pit privy. Existing well casings located on grade A dairy farms holding valid

- permits issued by the State Regulatory Authority on September 1, 1993, shall be exempt from the 100 foot distance requirement of this subdivision until the existing permit is canceled or revoked;
- (h) No grade A permit holder may locate a well casing closer than 100 feet to any animal manure disposal area;
- (i) No grade A permit holder may locate a well casing closer than 100 feet to any cess pool;
- (j) No grade A permit holder may locate a well casing closer than 100 feet to any dry well;
- (k) No grade A permit holder may locate a well casing closer than 100 feet to any structure which stores animal manure;
- (1) No grade A permit holder may locate a well casing closer than 100 feet to any septic tank or drain field; and
- (m) No grade A permit holder may locate a well casing closer than 100 feet to any underground or partially-buried gas, oil, petroleum, or chemical storage tank;
- (3) Construct the water supply so that the well casing terminates at least two feet above the highest known flood plane for the location in which the water supply is located; and
- (4) Construct the water supply so that no potable water supply pipe attached to the water supply is located closer than 10 feet measured horizontally to any sewer pipe, soil pipe, or drain;
- (2) Construct the water supply so that no cross connections between a safe water supply and any unsafe or questionable water supply or other source of pollution exists; and
- (3) Construct the water supply so that no submerged inlets exist through which a safe water supply may be contaminated;
- k. Item 9r. Utensils and equipment-construction. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Provide multiuse containers, equipment, and utensils for use in the handling, storage, or transportation of any milk, which multiuse containers, equipment, and utensils, shall be made of smooth, nonabsorbent, corrosion-resistant, and nontoxic materials; constructed as to be easily cleaned; and maintained in good repair;
- (2) Provide milk pails which that are constructed to be seamless and of the hooded type if the grade A permit holder does hand milking and stripping;
- (3) Abstain from using multiple-use woven material for straining any milk;
- (4) Use only single-service articles which that have been manufactured, packaged, transported, stored, and handled

- in a sanitary manner and that comply with the requirements of subdivision C 1 of this section;
- (5) Abstain from reusing any article intended for singleservice use; and
- (6) Provide farm holding or cooling tanks, welded sanitary piping, and transportation tanks which that comply with the requirements of subdivisions C 11 and C 1 m of this section on any grade A dairy farm;
- l. Item 10r. Utensils and equipment; cleaning. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Clean after each use, or once every 24 hours in the case of continuous operations, the product-contact surfaces of all multiuse containers, multiuse equipment, and multiuse utensils used in the handling, storage, or transportation of any milk; and
- (2) Offer for sale or sell no milk which that has passed through any equipment; if the milk-contact surfaces of the equipment are no longer visible; or are covered or partially covered by an accumulation of milk solids, milk fat, cleaning compounds, or other soils. Any milk which that passes through equipment, the milk-contact surfaces of which are no longer visible, or are covered or partially covered by an accumulation of milk solids, milk fat, cleaning compounds, or other soils shall be deemed adulterated; and
- (3) Construct a separate wash manifold for all CIP cleaned milk pipelines in all new or extensively remodeled facilities;
- m. Item 11r. Utensils and equipment; sanitization. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall sanitize before each use the product-contact surfaces of all multiuse containers, equipment, and utensils used in the handling, storage, or transportation of any milk;
- n. Item 12r. Utensils and equipment; storage. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, of aseptic processing and packaging, or retort processed after packaging shall store containers, utensils, and equipment used in the handling, storage, or transportation of any milk in a sanitizing solution or store the containers, utensils, and equipment used in the handling, storage, or transportation of any milk to assure complete drainage, and protected from contamination prior to use. Nothing in this requirement shall be deemed to prohibit a grade A permit holder from storing in a milking barn or milking parlor a milk pipeline, or the following pipeline milking equipment: milker claw, inflation, weigh jar, meter, milk

- hose, milk receiver, tubular cooler, plate cooler, or milk pump; if the milk pipeline or pipeline milking equipment specified in this subdivision is designed for mechanical cleaning; and designed, installed, and operated to protect the milk product and solution-contact surfaces from contamination at all times:
- o. Item 13r. Milking; flanks, udders, and teats. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Milk all cows, sheep, goats, water buffalo, and other mammals in a milking barn, stable, or parlor;
- (2) Trim the hair from the udder and tail of all milking cows, sheep, goats, water buffalo, and other mammals to facilitate cleaning of the udder and tail;
- (3) Keep the flanks, udders, bellies, and tails of all milking cows, sheep, goats, water buffalo, and other mammals free of visible dirt:
- (4) Keep the hair on the udders of all milking cows, sheep, goats, water buffalo, and other mammals to a length that the hair on the udder of any cow, sheep, goat, water buffalo, or other mammal cannot be incorporated with the teat in the inflation during milking;
- (5) Abstain from milking any cow, sheep, goat, water buffalo, or other mammal whose udder or teats is not clean and dry;
- (6) Treat with a sanitizing solution, just prior to milking, the teats of each milking cow, sheep, goat, water buffalo, and other mammal and dry the teats of each milking cow, sheep, goat, water buffalo, and other mammal before milking; and
- (7) Milk all cows, sheep, goats, water buffalo, and other mammal with dry hands;
- p. Item 14r. Protection from contamination. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Locate and operate the milking and milk house operations, equipment, and facilities to prevent any contamination of the milk, equipment, containers, or utensils;
- (2) Transfer immediately from the milking barn, stable, or parlor to the milkhouse each pail or container of milk;
- (3) Strain, pour, transfer, or store any milk unless it is protected from contamination;
- (4) Handle all containers, utensils and equipment that have been sanitized in such a manner as to prevent contamination of any product-contact surfaces;
- (5) Transport from the grade A permit holder's dairy farm to a milk plant or receiving station all milk in cans, using

- vehicles which that are constructed and operated to protect the milk from sun, freezing, and contamination;
- (6) Keep clean the inside and outside of each vehicle used to transport from the grade A permit holder's dairy farm to a milk plant or receiving station any milk in cans; and
- (7) Transport no substance capable of contaminating the milk when transporting milk;
- q. Item 15r. Drug and chemical control. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Store all drugs and medicinals in such a manner that neither the drugs nor the medicinals can contaminate any milk or the milk product-contact surface of any equipment, containers, or utensils;
- (2) Abstain from using unapproved or improperly labeled medicinals or drugs to treat any dairy animals or store unapproved or improperly labeled medicinals or drugs in the milkhouse, milking barn, stable or parlor. Except for topical antiseptics, wound dressings (unless intended for direct injection into the teat), vaccines and other biologics, and dosage form vitamins and mineral products, a drug or medicinal is properly labeled only if the drug or medicinal is labeled with the following:
- (a) For over-the-counter medicinals or drugs, the name and address of the manufacturer or distributor, or for prescription and extra-label use medicinals or drugs, the name of the veterinary practitioner dispensing the product;
- (b) Directions for use of the drug or medicinal and the prescribed holding time;
- (c) Any cautionary statement for the drug or medicinal, if needed; and
- (d) The active ingredient or ingredients in the drug or medicinal;
- (3) Except for topical antiseptics, wound dressings (unless intended for direct injection into the teat), vaccines and other biologics, and dosage form vitamins and mineral products, segregate all medicinals and drugs used for lactating dairy animals from any medicinals and drugs used for nonlactating dairy animals to include dairy calves, dairy heifers, and dairy bulls;
- (4) Except for topical antiseptics, wound dressings (unless intended for direct injection into the teat), vaccines and other biologics, and dosage form vitamins and mineral products, provide separate shelves in a cabinet, refrigerator, or other storage facility for the storage of all medicinals and drugs for treatment of nonlactating dairy animals, to include dairy calves, dairy heifers, and dairy bulls, separate from those medicinals or drugs used for lactating dairy animals; and

- (5) Store topical antiseptics, wound dressings (unless intended for direct injection into the teat), vaccines and other biologics, and dosage-form vitamins and mineral products in a manner that does not contaminate any milk or the milk-product surfaces of any containers or utensils;
- r. Item 16r. Personnel; hand-washing facilities. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, of aseptic processing and packaging, or retort processed after packaging shall provide hand-washing facilities that are convenient to the milkhouse, milking barn, stable, or parlor, and flush toilet and that include separate hot and cold running water; soap or detergent; and individual sanitary towels or other approved hand-drying devices. When individual sanitary towels are used, covered trash containers shall be provided;
- s. Item 17r. Personnel; cleanliness. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Wash clean and dry with an individual sanitary towel or other approved hand drying device the person's hands immediately before milking, before performing any milkhouse function, and immediately after the interruption of milking or performing any milkhouse function; and
- (2) Wear clean outer garments while milking or handling any milk, milk containers, utensils, or equipment. Bulk milk haulers shall wear clean outer garments while handling any milk, milk containers, utensils, or equipment;
- t. Item 18r. Cooling. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Cool to 40°F or cooler (but not freeze), all raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging, within two hours after the grade A permit holder completes milking; and assure that the temperature of the grade A permit holder's raw milk is not warmer than 50°F after the first milking or any subsequent milking. Raw milk for pasteurization which that is warmer than a temperature of 50°F after the first milking or any subsequent milking shall be deemed a public health hazard and shall not be offered for sale or sold; and
- (2) Assure that circular recording charts are operated continuously and maintained in a properly functioning manner. Circular charts shall not overlap; and
- (2) (3) Agitate all raw milk for pasteurization for not less than five minutes at least once every hour; assure that the milk in the farm's bulk milk cooling or holding tank

- covers the agitator paddle sufficiently to facilitate proper cooling and sampling after the completion of the first milking; and abstain from selling or offering for sale milk which that does not cover the agitator paddle sufficiently to facilitate proper cooling and sampling after the completion of the first milking;
- u. Item 19r. Insect and rodent control. Each person who holds a grade A permit to produce raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging shall:
- (1) Take effective measures to prevent the contamination of any milk, containers, equipment, and utensils by insects, rodents, and other animals, and by chemicals used to control insects, rodents, and other animals;
- (2) Maintain the milkroom free of insects, rodents and other animals;
- (3) Keep the areas surrounding the: milkhouse; milking barn; milking stable; milking parlor; cattle, sheep, water buffalo, other mammal, or goat housing; cattle, sheep, water buffalo, other mammal, or goat loafing area; water supply; or other facilities on the grade A permit holder's dairy farm neat, clean, and free of conditions which that might harbor or be conducive to the breeding of insects and rodents; and
- (4) Store all feed in such a manner that the feed will not attract birds, rodents, or insects.
- C. Sanitation requirements for grade A pasteurized, ultrapasteurized, or aseptically processed and packaged, or retort processed after packaged milk or milk products.
 - 1. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk or milk products shall comply with:
 - a. The following administrative procedures contained in the "Grade "A" Pasteurized Milk Ordinance, 2009 2013 Revision": Section 7., Standards for Grade "A" Pasteurized, Ultra-pasteurized and Aseptically Processed Milk and Milk Products, Items 1p, 2p, 3p, 4p, 5p, 6p, 7p, 8p, 9p, 10p, 11p, 12p, 13p, 14p, 15p, 16p, 17p, 18p, 19p, 20p, 21p, and 22p (provided in the case of milk plants or portions of milk plants that are IMS Listed to produce aseptically processed and packaged milk or milk products, the APPS or RPPS, respectively, as defined in the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision," shall be exempt from Items 7p, 10p, 11p, 12p, 13p, 15p, 16p, 17p, 18p, and 19p of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision" and shall comply with the applicable portions of 21 CFR Parts 108, 110, and 113); Section 13; and Section 14;
 - b. The following appendices contained in the "Grade "A" Pasteurized Milk Ordinance, 2009 2013 Revision": Appendices D, F, G, H, I, J, K, L, N, O and R, and S;

- c. Item 1p. Floors; construction. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk or milk products shall:
- (1) Except as specified in subdivision C 1 c (2) of this section, provide floors, for all rooms in which milk or milk products are processed, handled, <u>packaged</u>, or stored, or in which milk containers, equipment, or utensils are washed, constructed of concrete or other equally impervious and easily cleaned material and <u>which that</u> are smooth, properly sloped, provided with trapped drains, and kept in good repair;
- (2) The floor in any cold-storage room used for storing milk and milk products need not be provided with floor drains if the floors are sloped to drain to one or more exits from the cold-storage room. The floor in any storage room used for storing dry ingredients or packaging materials need not be provided with drains, and the floor in any storage room used for storing dry ingredients or packaging materials may be constructed of tightly joined wood;
- d. Item 2p. Walls and ceilings; construction. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk or milk products shall provide walls and ceilings of rooms in which milk or milk products are handled, processed, packaged, or stored, or in which milk containers, utensils, or equipment are washed, that have a smooth, washable, light-colored surface, and that are in good repair;
- e. Item 3p. Doors and windows. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk or milk products shall provide:
- (1) Effective means to prevent the access of flies insects and rodents to any part of a milk plant, receiving station, or transfer station; and
- (2) Solid doors or glazed windows for all openings to the outside of any milk plant, receiving station, or transfer station and keep the doors and windows closed during dusty weather;
- f. Item 4p. Lighting and ventilation. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall provide rooms in which any milk or milk products are handled, processed, packaged, or stored, or in which any milk containers, equipment, or utensils are washed, that are well lighted and well ventilated;
- g. Item 5p. Separate rooms. Each person who holds a grade A permit to produce grade A pasteurized, ultra-

pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall:

- (1) Provide separate rooms for: (i) pasteurizing, processing, cooling, reconstituting, condensing, drying, and packaging of milk, dry milk, and milk products; (ii) cleaning milk cans, containers, bottles, and cases, and dry milk or dry milk product containers; (iii) the fabrication of containers and closures for milk and milk products, except for aseptically processed and packaged milk and milk products, or retort processed after packaging milk and milk products in which the containers and closures are fabricated within the APPS or RPPS, respectively; (iv) cleaning and sanitizing facilities for bulk milk transport tanks if the grade A permit holder receives any milk or milk product in bulk milk transport tanks; and (v) receiving cans of milk and milk products separate from clauses (i), (ii) and (iii) of this subdivision, unless all of the grade A permit holder's milk or milk products are received in bulk milk transport tanks;
- (2) Not use any room with a direct opening into any stable or room used for domestic purposes to handle, process, or store any milk or milk products or; to wash or store any milk containers, utensils, or equipment;
- (3) Use rooms of sufficient size so as not to be crowded to handle, process, or store any milk or milk products or to wash or store any milk containers, utensils, or equipment; and
- (4) Provide designated areas or rooms for the receiving, handling, and storage of returned packaged milk and milk products if the permit holder receives any returned packaged milk or milk products;
- h. Item 6p. Toilet-sewage disposal facilities. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall provide each milk plant with toilet facilities conforming with the regulations of the Commonwealth and the following requirements: no toilet room may open directly into any room in which milk or milk products are processed; the toilet room shall be completely enclosed and shall have tight-fitting, self closing doors; the dressing room, toilet room, and fixtures shall be kept in a clean condition, in good repair, and shall be well ventilated and well lighted; and sewage and other liquid wastes from the toilet room shall be disposed of in a sanitary manner;
- i. Item 7p. Water supply. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall:

- (1) Provide water for each milk plant from a supply which that is properly located, protected, and operated; and
- (2) Provide water from a supply which that is easily accessible for inspection by the State Regulatory Authority, adequate, and of a safe, sanitary quality;
- j. Item 8p. Hand-washing facilities. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall:
- (1) Provide hand-washing facilities, including separate hot and cold running water, mix valve, soap, and individual sanitary towels or other approved hand-drying devices, convenient in any area where milk or milk products are handled, processed, or stored, and any area where containers, utensils, or equipment, are washed or stored; and
- (2) Keep the hand-washing facilities clean and in good repair;
- k. Item 9p. Milk plant cleanliness. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall:
- (1) Keep clean, neat, and free of any evidence of animals, insects, or rodents, all rooms in which milk or milk products are handled, processed, or stored or in which containers, utensils, or equipment are washed or stored; and
- (2) Permit only equipment directly related to processing operations or to the handling of containers, utensils, and equipment, in pasteurizing, processing, cooling, condensing, drying, packaging, or bulk milk, or milk product storage rooms;
- l. Item 10p. Sanitary piping. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall:
- (1) Use only sanitary piping, fittings, and connections consisting of smooth, impervious corrosion-resistant, nontoxic, easily cleanable materials that are exposed to any milk or milk products, or from which liquids may drip, drain, or be drawn into any milk or milk products;
- (2) Keep all piping in good repair;
- (3) Except as specified in subdivision 1 l of this subsection, use only sanitary piping to transfer any pasteurized or ultra-pasteurized milk or milk products from one piece of equipment to another piece of equipment; and

- (4) Transport cottage cheese, cheese dressings, or cheese ingredients by methods which that protect the product from contamination;
- m. Item 11p. Construction and repair of containers and equipment. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk₇ or milk products shall:
- (1) Use only multiuse containers and equipment, that may come in contact with any milk or milk products constructed of smooth, impervious, corrosion-resistant, and nontoxic materials; constructed for ease of cleaning; and kept in good repair;
- (2) Use only single-service containers, closures, gaskets, and other articles, that may come in contact with any milk or milk products, that are nontoxic and have been manufactured, packaged, transported, and handled in a sanitary manner;
- (3) Abstain from using more than once any articles intended for single-service use; and
- (4) Use only single-service containers, closures, caps, gaskets, and similar articles manufactured, packed, transported, and handled in a manner which that complies with the requirements of Appendix J, "Standards for the Fabrication of Single-Service Containers and Closures for Milk and Milk Products"; contained in the "Grade "A" Pasteurized Milk Ordinance, 2009 2013 Revision";
- n. Item 12p. Cleaning and sanitizing of containers and equipment. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall:
- (1) Effectively clean and sanitize before each use the product-contact surfaces of all multiuse containers and equipment, utensils, and equipment used in the transportation, processing, handling, and storage of any milk or milk products;
- (2) Use only multi use multiuse containers for packaging pasteurized milk and milk products that comply with the following: (i) the residual bacteria count on multi use multiuse containers may not exceed one per milliliter of capacity when the rinse test is used, or the residual bacteria count on multi use multiuse containers shall not exceed 50 colonies per eight square inches (one per square centimeter) of product-contact surface, when the swab test is used; in three-out-of-four samples taken at random on a given day; and (ii) all multi use multiuse containers shall be free of coliform organisms; and
- (3) Use only single-service containers for packaging pasteurized milk and milk products that comply with the following: (i) the residual bacteria count of single-service containers shall not exceed 50 per container, when the

- rinse test is used, except that in containers less than 100 milliliters, the count shall not exceed 10, or the residual bacteria count of single-service containers shall not exceed 50 colonies per eight square inches (one per square centimeter) of product contact surface, when the swab test is used; in three-out-of-four samples taken at random on a given day; and (ii) all single-service containers shall be free of coliform organisms;
- o. Item 13p. Storage of cleaned containers and equipment. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products, shall after cleaning any multiuse milk or milk product containers, utensils, or equipment, transport or store the multiuse milk or milk product containers, utensils, or equipment in a manner that assures complete drainage and in a manner that protects the multiuse milk or milk product containers, utensils, or equipment from contamination before use;
- p. Item 14p. Storage of single-service containers, utensils, and materials. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall:
- (1) Purchase all single-service caps, cap stock, parchment paper, containers, gaskets, and other single-service articles for use in contact with milk or milk products, in sanitary tubes, wrappings, or cartons;
- (2) Store in a clean dry place until used, single-service caps, cap stock, parchment paper, containers, gaskets, and other single-service articles for use in contact with milk or milk products;
- (3) Store single-service caps, cap stock, parchment paper, containers, gaskets, and other single-service articles for use in contact with milk or milk products in sanitary tubes, wrappings, or cartons; and
- (4) Handle single-service caps, cap stock, parchment paper, containers, gaskets, and other single-service articles for use in contact with milk or milk products in a sanitary manner;
- q. Item 15p. Protection from contamination. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall:
- (1) Locate the person's equipment and facilities and conduct milk plant operations to prevent any contamination of any milk or milk products, ingredients, equipment, containers, or utensils;
- (2) Discard all milk, milk products, or ingredients which that have been spilled, overflowed, or leaked;

- (3) Perform the processing and handling of products other than <u>grade A</u> milk and milk products in the person's milk plant to preclude the contamination of any <u>grade A</u> milk or milk products;
- (4) Store, handle, or use any <u>poisonous or</u> toxic material to preclude the contamination of any milk, milk product, or ingredient, and the milk product contact surfaces of all equipment, containers, or utensils; and
- (5) Clean, prior to use, all multi use multiuse cases used to encase packaged milk or milk product containers;
- r. Item 16p. Pasteurization and ultra-pasteurization. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall:
- (1) Perform pasteurization or ultra-pasteurization as defined in 2VAC5-490-10, and Item 16p of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision"; and
- (2) Perform aseptic processing <u>and packaging and retort</u> <u>processed after packaging</u> in <u>compliance accordance</u> with the <u>provisions applicable requirements</u> of 21 CFR <u>Part 113, 21 CFR Part Parts</u> 108, and the <u>Administrative Procedures of Item 16p, 16p(C), 16p(D), and 16p(E) of the "Grade "A" Pasteurized Milk Ordinance, 2009 <u>Revision"</u> 110, and 113:</u>
- s. Item 17p. Cooling of milk. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall:
- (1) Maintain all raw milk and milk products at a temperature of 45°F or cooler, but not frozen, until processed;
- (2) Maintain all whey and whey products for condensing, drying, or condensing and drying at a temperature of 45°F (7°C) or cooler; or 135°F (57°C) or greater until processed, except that acid-type whey with a titratable acidity of 0.40% or above, or a pH of 4.6 or below, is exempted from these temperature requirements;
- (3) Completely empty and clean the tanks and vessels used to blend and hold all milk or milk product flavoring slurries that contain milk and milk products after each four hours of operation or less if such tanks are not intended to be injected within a HTST pasteurization system as part of a liquid ingredient injection system as outlined in Appendix H of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision" or unless the slurry is stored at a temperature of 45°F (7°C) or cooler, or at a temperature of 150°F (66°C) or greater and maintained thereat;
- (3) (4) Immediately cool, except for the following milk or milk products, all pasteurized or ultra-pasteurized milk or milk products prior to filling or packaging in approved

- cooling equipment to a temperature of 45°F or cooler, but not frozen, unless drying is commenced immediately after condensing:
- (a) Those milk or milk products to be cultured;
- (b) Cultured sour cream at all milkfat levels with a pH of 4.70 or below:
- (c) Acidified sour cream at all milkfat levels with a pH of 4.60 or below;
- (d) All yogurt products at all milkfat levels with an initial pH of 4.80 or below at filling;
- (e) Cultured buttermilk at all milkfat levels with a pH of 4.60 or below; and
- (f) All condensed whey and whey products shall be cooled during the crystallization process to 50°F (10°C) or less within 72 hours of condensing, including the filling and emptying time, unless filling occurs above 135°F (57°C), in which case, the 72 hour time period begins when cooling started; and
- (g) All cultured cottage cheese at all milkfat levels with a pH of 5.2 or below shall be cooled as per specifications of Item 17p (6a-6e) of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision";
- (4) (5) Store, transport, and deliver at a temperature of 45°F or cooler, but not frozen, all pasteurized or ultrapasteurized milk or milk products with the following exceptions:
- (a) Cultured sour cream at all milkfat levels with a pH of 4.70 or below shall be cooled to 45°F (7°C) or cooler within 168 hours of filling;
- (b) Acidified sour cream at all milkfat levels with a pH of 4.60 or below shall be cooled to $45^{\circ}F$ (7°C) or cooler within 168 hours of filling;
- (c) All yogurt products at all milkfat levels with an initial pH of 4.80 or below at filling and with a subsequent pH of 4.60 or below within 24 hours after filling shall be cooled to 45°F (7°C) or cooler within 96 hours after filling; and
- (d) Cultured buttermilk at all milkfat levels with a pH of 4.60 or below shall be cooled to 45°F (7°C) or cooler within 24 hours after filling; and
- (e) Cultured cottage cheese at all milkfat levels with a pH of 5.2 or below shall be stored as per specifications of item 17p (5a-5d) of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision";
- (5) (6) Store all pasteurized milk and milk products to be condensed, dried, or condensed and dried at a temperature of 50°F (10°C) or cooler until further processed;
- (6) (7) Equip with an accurate indicating thermometer each of the rooms or tanks in which any milk, milk products, whey, or whey products are stored; and

- (7) (8) Maintain the temperature on delivery vehicles of milk and milk products at 45°F (7°C) or cooler. Aseptically processed and packaged milk and milk products and retort processed after packaged milk and milk products to be packaged in hermetically sealed containers shall be exempt from the cooling requirements of this item; and
- (9) Provide ready access at the plant to cleaning records and product storage temperature records stored electronically for review by the State Regulatory Authority. Electronic records of cleaning shall comply with the applicable provisions of Appendix H, Sections IV and V of the "Grade "A" Pasteurized Milk Ordinance, 2009 2013 Revision";
- t. Item 18p. Bottling and packaging. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall:
- (1) Bottle or package all milk or milk products at the place of pasteurization in the grade A permit holder's milk plant and in approved mechanical equipment;
- (2) Package and store in a sanitary manner all dry milk products in new containers, which protect the contents from contamination; and
- (3) Transport and store in a sanitary manner all condensed and dry milk products in sealed containers from one milk plant to another milk plant for further processing or packaging;
- u. Item 19p. Capping. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall:
- (1) Cap or close all milk or milk product containers in a sanitary manner by use of approved mechanical capping or closing <u>and sealing</u> equipment; and
- (2) Use only caps or closures for all milk or milk products, which that protect the pouring lip of a milk or milk product container to at least its largest diameter and, use with respect to fluid product containers, only caps or closures that the removal of the cap or closure cannot be made without detection;
- v. Item 20p. Personnel; cleanliness. No person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall:
- (1) Permit any person in a milk plant to commence any plant function before the person has thoroughly washed the person's hands to remove soil and contamination or to permit any person in a milk plant to continue any plant function if the person's hands are not clean;

- (2) Permit any person in a milk plant to resume work after the person has visited the toilet room before the person has thoroughly washed the person's hands;
- (3) Permit any person in a milk plant to engage in the processing, pasteurization, handling, storage, or transportation of any milk, milk products, containers, equipment or utensils, unless the person is wearing clean outer garments;
- (4) Permit any person in a milk plant, to engage in the processing of any milk or milk products unless the person wears adequate hair covering; or
- (5) Permit any person in a milk plant, to engage in the processing of any milk or milk products if the person is using tobacco;
- w. Item 21p. Vehicles. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, of aseptically processed and packaged, or retort processed after packaged milk, or milk products shall use vehicles to transport pasteurized and ultra-pasteurized milk and milk products that are constructed and operated so that the milk or milk products are maintained at a temperature of 45°F or cooler, but not frozen, and protected from sunlight, from freezing, and from contamination;
- x. Item 22p. Surroundings. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk, or milk products shall keep neat, clean, and free from conditions which that might attract or harbor flies, other insects, rodents, or which other pests that otherwise constitute a nuisance, the area surrounding any milk plant;
- y. Each grade A permit holder's receiving station shall comply with subdivisions C 1 a through q of this section, inclusive, and subdivisions C 1_7 s, v, and x of this section, except that the partitioning requirement of subdivision C 1 g of this section shall not be deemed to apply;
- z. Each grade A permit holder's transfer station shall comply with subdivisions C 1 c, f, h through n, p, q, s, v, and x of this section; and as climatic and operating conditions require, the provisions of subdivisions C 1 d and e of this section; except that each person shall provide overhead protection for a transfer station; and
- a1. Each grade A permit holder's facilities for the cleaning and sanitizing of bulk tanks which that transport milk and milk products shall comply with subdivisions C 1 a, f, h through n, p, q, v, and x of this section; and as climatic and operating conditions require, the provisions of subdivisions C 1 d and e of this section except that each grade A permit holder shall provide overhead protection for facilities for the cleaning and sanitizing of bulk tanks which transport milk and milk products in the

grade A permit holder's milk plant, receiving station, or transfer station.

- D. Minimum facilities requirements for milk processing plant. Each person who holds a grade A permit to produce grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaging milk or milk products shall:
 - 1. Provide a separate receiving room meeting the requirements of subdivision C 1 y of this section from any other area of the plant for the receipt of milk or milk products in bulk if the plant receives any milk or milk products in bulk;
 - 2. Provide cleaning and sanitizing facilities for milk tank trucks as part of the plant's receiving room facilities if the plant receives any milk or milk products in bulk;
 - 3. Provide a separate receiving room from any other area of the plant for the receipt of milk or milk product in cans or other containers if the plant receives any milk or milk product in cans or other containers;
 - 4. Provide a separate room from any other area of the plant for the cleaning of milk cans or containers, bottles, milk cases, and dry milk or milk product containers if the plant receives any milk in cans or containers or washes any bottles, milk cases, or dry milk or milk product containers;
 - 5. Provide a separate room for the fabrication of containers and closures for milk and milk products if the plant fabricates any containers or closures;
 - 6. Provide a separate room for the packaging of dry milk or milk products if the plant packages any dry milk or milk product; and
 - 7. Provide separate rooms from any other area of the plant for each of the following operations performed on any milk, milk product, or condensed and dry milk product: (i) pasteurization; (ii) processing; (iii) cooling; (iv) reconstitution; (v) condensing; (vi) drying; and (vii) packaging, if the operation is performed in the plant.

Part VII Animal Health

2VAC5-490-60. Animal health.

- A. No person may produce, provide, manufacture sell, offer for sale, store in the Commonwealth, or, bring, send, or receive into the Commonwealth any milk, milk product, or condensed and dry milk product for use in the commercial preparation of grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk or milk product unless the person complies with the following requirements:
 - 1. Milk for pasteurization or ultra-pasteurization or aseptic processing and packaging, or retort processed after packaging from cows, goats, sheep, water buffalo, and other mammals shall (i) be from a herd or flock that complies with the "Uniform Methods and Rules; Bovine"

- "Bovine Tuberculosis Eradication-effective ": Uniform Methods and Rules, effective January 1, 2005," 9 CFR Part 77, and each herd or flock shall be located in a Modified Accredited Advanced Tuberculosis Area or an Area Accredited Free of Bovine Tuberculosis as defined in "Uniform Methods and Rules: Bovine "Bovine Tuberculosis Eradication-effective ": Uniform Methods and Rules, effective January 1, 2005," and certified; (ii) be accredited as a tuberculosis-free herd by the U.S. Department of Agriculture or shall; (iii) have passed an annual tuberculosis test; or (iv) be located in an area that has established a tuberculosis testing protocol for livestock that assures tuberculosis protection and surveillance of the dairy industry within the area and that is approved by FDA, USDA, and the State Regulatory Authority;
- 2. Milk for pasteurization or ultra-pasteurization or aseptic processing and packaging, or retort processed after packaging from bison and cattle shall be from a herd that complies with "Uniform Methods and Rules; Brucellosis "Brucellosis Eradication-effective: Uniform Methods and Rules, effective October 1, 2003," 9 CFR Part 78, and the following:
 - a. Each herd shall be located in a Certified Brucellosis-Free Area or a Modified Certified Brucellosis Area as defined in "Uniform Methods and Rules; Brucellosis "Brucellosis Eradication-effective: Uniform Methods and Rules, effective October 1, 2003," and or shall be a certified brucellosis-free herd by the United States Department of Agriculture and enrolled in a testing program for the Certified Brucellosis Free Area or the Modified Certified Brucellosis Area;
 - b. Each herd shall meet the requirements for an individually certified herd as defined in "Uniform Methods and Rules; Brucellosis "Brucellosis Eradication-effective: Uniform Methods and Rules, effective October 1, 2003";
 - c. Each herd shall participate in a milk ring testing program meeting the requirements specified in "Uniform Methods and Rules; Brucellosis "Brucellosis Eradication-effective: Uniform Methods and Rules, effective October 1, 2003," in an area that conducts a milk ring testing program at least two times per year at approximately equal intervals, and any herd with a positive milk ring test result shall be blood tested within 30 days from the date of the positive milk ring test; or
 - d. Each cow, bull, heifer, calf, and bison in the herd shall be individually tested by an "official" blood test as defined in "Uniform Methods and Rules; Brucellosis "Brucellosis Eradication" for the detection of brucellosis annually;
- 3. Goat's milk, sheep's milk, water buffalo milk, and milk from other mammals (except bison and cattle) for pasteurization of, ultra-pasteurization of, aseptic

processing <u>and packaging</u>, <u>or retort processed after packaging</u> shall be from a herd or flock which <u>that</u>:

- a. Has an annual whole-herd brucellosis test <u>as</u> recommended by the State Veterinarian or USDA Area Veterinarian in Charge;
- b. Has passed an initial whole herd or flock brucellosis test, followed by the testing of all replacement animals or any animals entering the milking group or sold as dairy animals on a continuing basis;
- c. Has passed an annual random blood-testing program sufficient to provide a confidence level of 99% with a P value of 0.05. Any herd or flock with one or more confirmed positive animals shall go to 100% testing until the whole herd tests show no positive animals are found. The following table provides the random sampling size needed to achieve a 99% confidence with a P value of 0.05:

Herd/Flock Size	Sampling Size	Herd/Flock Size	Sampling Size
20	20	500	82
50	41	600	83
100	59	700	84
150	67	800	85
200	72	1000	86
250	75	1400	87
300	77	1800	88
350	79	4000	89
400	80	10000	89
450	81	100000	90

; or

- d. Has passed a USDA-approved bulk milk brucellosis test certified for use in each species of mammal and at the USDA-recommended frequency for testing with an implementation date based on the availability of the test; and
- 4. For diseases of cows, sheep, goats, water buffalo, or other mammals which that might affect human health, other than brucellosis and tuberculosis, the State Regulatory Authority may require physical, chemical, or bacteriological examinations or other tests as may be deemed necessary by a licensed veterinarian or a veterinarian in the employ of the State Regulatory Authority to diagnose the disease. Each grade A permit holder shall dispose of any diseased animal disclosed by testing in a manner which that prevents the spread of the disease to other animals or humans.

B. Each grade A dairy farm permit holder shall test his whole herd of milking mammals for brucellosis using a test method acceptable to a licensed veterinarian or a veterinarian in the employ of the State Regulatory Authority within 30 days after each positive screening test result on a milk ring test.

Part VIII

Milk and Milk Products Which that May Be Sold

2VAC5-490-70. Milk or milk products which that may be sold.

- A. Except as specified in subsection B of this section from and after September 10, 1993, a person may sell, offer for sale, or expose for sale in the Commonwealth only grade A pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk or milk products to the final consumer, or to restaurants, soda fountains, and grocery stores or similar establishments, provided only grade A milk and milk products shall be sold to milk plants for use in the commercial preparation of grade A milk and milk products.
- B. No person may sell, offer for sale, or expose for sale in the Commonwealth any pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk or milk products which that have not been graded or the grade of which is not known to the final consumer, or to restaurants, soda fountains, and grocery stores or similar establishments unless the Commissioner of Agriculture and Consumer Services makes a finding in writing (which the Commissioner of Agriculture and Consumer Services may renew for terms not to exceed 90 days per term, without limitation) that the supply of grade A raw milk for pasteurization, ultra-pasteurization, or aseptic processing and packaging, or retort processed after packaging is not adequate to meet the nutritional needs of any person who secures milk in Virginia; or the supply of pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk or milk product at retail is not available for purchase by any person who secures milk in Virginia.
- C. No person may sell, offer for sale or, expose for sale in, or possess in the Commonwealth any pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged milk or milk products under the provision of subsection B of this section unless the milk or milk product is labeled "ungraded."
- 2VAC5-490-73. Mandatory pasteurization for all milk, milk products, condensed milk, condensed milk products, aseptically processed and packaged milk and milk products, retort processed after packaged milk and milk products, dry milk, and dry milk products in final package form intended for direct human consumption.

No person shall sell or hold with intent to sell or offer to sell in intrastate commerce any milk, milk product, condensed milk, condensed milk product, <u>aseptically processed and</u>

packaged milk and milk products, retort processed after packaged milk and milk products, dry milk, or dry milk product in final package form for direct human consumption unless the product has been pasteurized or is made from milk, milk product, condensed milk, condensed milk product, aseptically processed and packaged milk and milk products, retort processed after packaged milk and milk products, dry milk, or dry milk product that has all been pasteurized, except where alternative procedures to pasteurization are provided for under 21 CFR Part 133 for curing of certain cheese varieties.

2VAC5-490-90. Milk and milk products from beyond the limits of routine inspection.

No person may provide, sell, offer for sale, or, store in the Commonwealth or, bring, send, or receive, in the Commonwealth any condensed milk, condensed milk product, aseptically processed and packaged milk or milk products, retort processed after packaged milk or milk products, dry milk, dry milk product, or milk or milk product from outside the Commonwealth unless the condensed milk, condensed milk product, aseptically processed and packaged milk or milk products, retort processed after packaged milk or milk products, dry milk, dry milk product, or milk or milk products are produced and pasteurized, ultra-pasteurized, or aseptically processed and packaged, or retort processed after packaged under regulations which that are substantially equivalent to this chapter and the supply of the milk and the milk plant that produced the condensed milk, condensed milk product, aseptically processed and packaged milk or milk products, retort processed after packaged milk or milk products, dry milk, dry milk product, or milk or milk product has been awarded a milk sanitation compliance rating of at least 90 and an enforcement compliance rating of at least 90, or awarded an acceptable HACCP listing made by a state milk sanitation listing officer certified by the United States Public Health Service. The State Regulatory Authority may impound any condensed milk, condensed milk product, aseptically processed and packaged milk or milk products, retort processed after packaged milk or milk products, dry milk, dry milk product, or milk or milk product within the Commonwealth of Virginia if it does not comply with the requirements of this section.

2VAC5-490-100. Construction plans for dairy farms and milk plants.

No grade A permit holder may construct, reconstruct, or modify a milkhouse, milking barn, stable, or parlor, milk tank truck cleaning facility, transfer station, receiving station, or milk plant regulated under this chapter without submitting to the State Regulatory Authority written plans for review and approval before construction work is begun.

Part XI Voluntary HACCP Program Article 1 Program Participation

2VAC5-490-131. HACCP program participation voluntary.

- A. Participation in the HACCP program is voluntary for each person who operates a dairy plant, receiving station, or transfer station and the State Regulatory Authority responsible for the permitting and auditing of each person's dairy plant, receiving station, or transfer station. No person operating a milk plant, receiving station, or transfer station may participate in the voluntary HACCP program unless the State Regulatory Agency responsible for the permitting and auditing of each person's dairy plant agrees to participate in the voluntary HACCP program, also.
- B. Each person volunteering to operate his milk plant, receiving station, or transfer station under the voluntary HACCP program shall provide a written commitment to the State Regulatory Authority responsible for his milk plant, receiving station, or transfer station that he will supply the necessary resources to support participation in the voluntary HACCP program.
- C. Each State Regulatory Authority volunteering to participate in the voluntary HACCP program shall provide a written commitment to the person requesting to operate a milk plant, receiving station, or transfer station under the voluntary HACCP program that the State Regulatory Authority will supply the necessary resources to support participation in the voluntary HACCP program.
- D. Each person operating a milk plant, receiving station, or transfer station and participating in the voluntary HACCP program shall have a minimum of 60 days of HACCP System system records prior to a HACCP listing audit. Each milk plant, receiving station, or transfer station shall be inspected and permitted initially by the State Regulatory Authority and shall be regulated initially under the requirements of this chapter without taking into consideration the provisions of this part until the State Regulatory Authority conducts an acceptable HACCP listing audit documenting the successful implementation of a fully functioning HACCP System system in the person's milk plant, receiving station, or transfer station.
- E. Each person operating a milk plant, receiving station, or transfer station and participating in the voluntary HACCP program shall:
 - 1. Comply with all of the provisions applicable to the voluntary HACCP program contained in the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision" to include:
 - a. Section 7, Standards for grade "A" milk and milk products;
 - b. Item Items 16p, Pasteurization and aseptic processing 16p(A), 16p(B), 16p(C), and 16p(D);

- c. Item 16p(E), Pasteurization and aseptic processing records, equipment tests and examinations;
- d. Section 13, Personnel health;
- e. <u>d.</u> Section 14, Procedure when infection or high risk of personnel health;
- f. e. Appendix H, Pasteurization Equipment and procedures;
- g. f. Appendix I, Pasteurization equipment and controls tests:
- h. g. Appendix K, HACCP Program; and
- i. h. Appendix R, Determination of Time/Temperature Control for Safety of Milk and Milk Products contained in the "Grade "A" Pasteurized Milk Ordinance, 2009 Revision"; and
- i. Appendix S.
- 2. Prepare their HACCP Plan plan based on the following HACCP principles:
 - a. Conduct a hazard analysis;
 - b. Determine the critical control points;
 - c. Establish critical limits;
 - d. Establish monitoring procedures;
 - e. Establish corrective actions;
 - f. Establish verification procedures; and
- g. Establish recordkeeping and documentation procedures;
- 3. Prior to the implementation of a HACCP <u>Plan plan</u> develop, document, and successfully implement written prerequisite programs <u>which that</u> provide the basic environment and operating conditions that are necessary for the production of safe, wholesome food.

Article 2 Implementation of a HACCP System

2VAC5-490-132. Prerequisite programs.

- A. Each person operating a milk plant, receiving station, or transfer station and participating in the voluntary HACCP program shall:
 - 1. Provide complete, up-to-date process flow diagrams for all grade A milk, milk products, condensed milk, condensed milk products, dry milk, or dry milk products prior to developing the HACCP plan;
 - 2. Provide a brief written description or checklist for each prerequisite program that can be audited against to endure compliance. Each prerequisite program shall include procedures that can be monitored, records that specify what is monitored, and how often it will be monitored;
 - 3. Develop and implement prerequisite programs that address conditions and practices before, during, and after processing;
 - 4. Develop and implement prerequisite programs that address:

- a. Safety of the water that comes into contact with milk, milk products, condensed milk, condensed milk products, dry milk, dry milk products, or product-contact surfaces, including steam and ice;
- b. Condition and cleanliness of equipment product-contact surfaces;
- c. Prevention of cross-contamination from unsanitary objects and or practices to milk, milk products, condensed milk, condensed milk products, dry milk, dry milk products, or product-contact surfaces, packaging material, and other food-contact surfaces, including utensils, gloves, outer garments, etc etc., and from raw product to processed product;
- d. Maintenance of hand washing, hand sanitizing, and toilet facilities:
- e. Protection of milk, milk products, condensed milk, condensed milk products, dry milk, dry milk products, packaging material, and product-contact surfaces from adulteration with lubricants, fuel, pesticides, cleaning compounds, sanitizing agents, condensate, and other chemical, physical, and biological contaminates;
- f. Proper labeling, storage, and use of toxic compounds;
- g. Control of employee health conditions, including employee exposure to high risk situations, that could result in the microbiological contamination of milk, milk products, condensed milk, condensed milk products, dry milk, dry milk products, packaging materials, and product-contact surfaces; and
- h. Pest exclusion from the milk plant, receiving station, or transfer station:
- 5. In addition to the required prerequisite programs specified in this section, any other prerequisite programs that are being relied upon in the hazard analysis to reduce the likelihood of hazards such that they are not reasonably likely to occur shall also be monitored, audited, and documented as required prerequisite programs; and
- <u>6. Comply with the requirements of Appendix K of the "Grade "A" Pasteurized Milk Ordinance, 2013 Revision."</u>
- B. Each person operating a milk plant, receiving station, or transfer station and participating in the voluntary HACCP program shall:
 - 1. Monitor the conditions and practices of all required prerequisite programs with sufficient frequency to ensure conformance with those conditions and that are appropriate both to the milk plant, receiving station, or transfer station and to the safety of the milk, milk products, condensed milk, condensed milk products, dry milk, or dry milk products being processed;
 - 2. Document the correction of those conditions and practices that are not in conformance with all prerequisite programs;

- 3. Determine the frequency of calibration for indicating thermometers, recording thermometers, and other devices used to monitor prerequisite programs and ensure that they are properly calibrated to assure accuracy at the determined frequency; and
- 4. Maintain records that document the monitoring and corrections required by their prerequisite programs for review by the State Regulatory Authority.

2VAC5-490-136. Verification and validation.

- A. Each person operating a milk plant, receiving station, or transfer station and participating in the voluntary HACCP program shall verify that the HACCP system is being implemented according to design, except that critical factors for aseptically processed and packaged grade A milk and milk products, as determined by the process authority and listed on the scheduled process under 21 CFR Part 113 shall be managed separately from the voluntary HACCP program, even if identified as a Critical Control Point critical control point in the hazard analysis. Critical factors identified in the scheduled process shall be monitored under the operating supervision of an individual who has successfully completed an approved course of instruction in low-acid canned foods as required by 21 CFR 108.35.
- B. Each person operating a milk plant, receiving station or transfer station and participating in the voluntary HACCP program shall include in their verification activities:
 - 1. The calibration of Critical Control Point critical control point process-monitoring instruments;
 - 2. At the option of the person operating a milk plant, receiving station, or transfer station, the performance of periodic end-product or in-process testing;
 - 3. A review, including signing and dating, by an individual who has been trained in accordance with the training requirements of this chapter, of the records that document:
 - a. The monitoring of Critical Control Points critical control points;
 - b. The taking of corrective action; and
 - c. The calibrating of any process monitoring instruments used at Critical Control Points critical control points and the performance of any periodic end-product or inprocess testing that is part of HACCP Plan plan verification activities;
 - 4. The taking of corrective action procedures whenever any verification procedure establishes the need to take a corrective action; and
 - 5. The calibration of Critical Control Point critical control point process-monitoring instruments, and the performance of any periodic end-product and in-process testing, in accordance with subdivisions 3 a and b of this subsection, shall be documented in records and maintained as required by this chapter.

- C. Each person operating a milk plant, receiving station, or transfer station and participating in the voluntary HACCP program shall:
 - 1. Validate that the HACCP plan is adequate to control hazards that are reasonably likely to occur at least once within 12 months after implementation of the HACCP system and annually thereafter or whenever any changes in the process occur that could affect the hazard analysis or alter the HACCP plan;
 - 2. Ensure the validation is performed by a qualified individual or individuals trained in accordance with the requirements of this chapter;
 - 3. Ensure the validation is documented and the records maintained as required by this chapter; and
 - 4. Ensure the HACCP plan is modified immediately whenever a validation reveals that the HACCP plan is no longer adequate.
- D. Whenever a milk plant, receiving station, or transfer station does not have a HACCP plan, because a hazard analysis has revealed no hazards that are reasonable likely to occur, the person operating the milk plant, receiving station, or transfer station and participating in the voluntary HACCP program shall reassess the adequacy of the hazard analysis whenever there are any changes in the process that could reasonably affect whether a hazard exists.

2VAC5-490-138. Training.

Each person operating a milk plant, receiving station, or transfer station and participating in the voluntary HACCP program shall ensure that each person who is responsible for: (i) developing a hazard analysis; (ii) delineating control measures; (iii) developing a HACCP plan that is appropriate for the specific milk plant, receiving station, or transfer station; (iv) validating and modifying the HACCP plan; or (v) performing required HACCP plan record reviews has received basic HACCP training and an orientation to the HACCP requirements contained in Appendix K of the "Grade "A" Pasteurized Milk Ordinance, 2009 2013 Revision."

Part XII
Interpretation and Enforcement

2VAC5-490-140. Interpretation and enforcement.

- A. This chapter is based on the "Grade "A" Pasteurized Milk Ordinance, 2009 2013 Revision." Except as otherwise provided in this chapter, the provisions of this chapter shall be interpreted in a manner consistent with interpretations accorded the "Grade "A" Pasteurized Milk Ordinance, 2009 2013 Revision."
- B. The administrative procedures used to conduct case decisions under this chapter shall conform to the provisions of the Virginia Administrative Process Act (§ 2.2-4000 et seq. of the Code of Virginia).
- C. The State Regulatory Authority shall comply with the following administrative procedures when summarily

suspending a grade A permit as specified in 2VAC5-490-31 B:

- 1. The State Regulatory Authority shall serve upon the grade A permit holder a written notice of suspension. The written notice of suspension shall specify the violations in question and inform the grade A permit holder of the right to appear before the State Regulatory Authority in person, by counsel, or by other qualified representative at a fact-finding conference for the informal presentation of factual data, arguments, and proof to appeal this determination of violation;
- 2. Upon receipt of written application from any person whose grade A permit has been summarily suspended (within 30 days after the effective date of the summary suspension) the State Regulatory Authority shall within seven days after the date of receipt by the State Regulatory Authority of a written application from any person whose grade A permit has been summarily suspended proceed to hold an informal fact-finding conference to ascertain the facts of the violations in question and upon evidence presented at the informal fact-finding conference shall affirm, modify, or rescind the summary suspension;
- 3. The State Regulatory Authority shall, unless the parties consent, ascertain the fact basis for their decisions of cases through informal conference proceedings. Such conference proceedings include the rights of parties to the case to have reasonable notice thereof, to appear in person or by counsel or other qualified representative before the State Regulatory Authority for the informal presentation of factual data, argument, or proof in connection with any case, to have notice of any contrary fact basis or information in the possession of the agency which that can be relied upon in making an adverse decision, to receive a prompt decision of any application for license, benefit, or renewal thereof, and to be informed, briefly and generally in writing, of the factual or procedural basis for an adverse decision in any case;
- 4. No person whose grade A permit has been summarily suspended may be granted an informal fact-finding conference by the State Regulatory Authority unless the State Regulatory Authority receives the person's written application within 30 days after the effective date of the summary suspension;
- 5. From any adverse decision of an informal fact-finding conference, the grade A permit holder may request a formal hearing under § 2.2-4020 of the Code of Virginia by writing the Program Manager of the Office of Dairy and Foods within 30 days stating the request and by providing the State Regulatory Authority with a statement of the issues in dispute. If the request for a formal conference is denied, the State Regulatory Authority shall notify the grade A permit holder in writing and further may affirm or modify the decision of the informal fact-finding conference; and

6. If a formal fact-finding conference is denied, the State Regulatory Authority shall notify the grade A permit holder of the right to file an appeal in the circuit court.

NOTICE: The following forms used in administering the regulation were filed by the agency. The forms are not being published; however, online users of this issue of the Virginia Register of Regulations may click on the name of a form with a hyperlink to access it. The forms are also available from the agency contact or may be viewed at the Office of the Registrar of Regulations, General Assembly Building, 2nd Floor, Richmond, Virginia 23219.

[FORMS (2VAC5-490)

<u>Dairy Farm Inspection Report, ODF-DS-102 (rev. 2/06)</u>
<u>Application for a Dairy Farm Permit, ODF-DS-100 (rev. 6/12)</u>

DOCUMENTS INCORPORATED BY REFERENCE (2VAC5-490)

Drug Residue Test Methods for Confirmation of Presumptive Positive Results and Initial Producer Trace Back, M I 96 10 (Revision #7), January 4, 2010 published by the Food and Drug Administration, Dairy and Egg Branch (HFS 316), 5100 Paint Branch Parkway, College Park, MD 20740 3835.

Evaluation of Milk Laboratories, 2009 Revision, published by the Food and Drug Administration Laboratory Proficiency and Evaluation Team, HFH 450, 6502 South Archer Road, Summit Argo, Illinois 60501.

Grade "A" Pasteurized Milk Ordinance, 2009 Revision, published by the Food and Drug Administration, Milk Safety Branch (HFS 626), 5100 Paint Branch Parkway, College Park, MD 20740 3835.

Official Methods of Analysis of the Association of AOAC International, 18th Edition, 2005, published by the Association of Official Analytical Chemists International, 481 North Frederick Avenue, Suite 500, Gaithersburg, Maryland 20877–2417.

Uniform Methods and Rules: Brucellosis Eradication—effective October 1, 2003, available from U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Federal center Building, Hyattsville, Maryland 20782 or Federal Veterinarian in Charge, USDA/APHIS VS, Virginia Area Office, 7th Floor, Federal Building, 400 N. 8th Street, Richmond, Virginia 23240.

Uniform Methods and Rules: Bovine Tuberculosis Eradication effective January 1, 2005, available from U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, federal Center Building, Hyattsville, Maryland 20782 or Federal Veterinarian in Charge, USDA/APHIS-VS, Virginia Area Office, 7th Floor, Federal Building, 400 N. 8th Street, Richmond, Virginia 23240.

Bovine Tuberculosis Eradication: Uniform Methods and Rules, effective January 1, 2005, available from U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Federal Center Building, Hyattsville, Maryland 20782, or Assistant District Director, USDA/APHIS-VS, Virginia Area Office, 7th Floor, Federal Building, 400 North 8th Street, Richmond, Virginia 23240

Brucellosis Eradication: Uniform Methods and Rules, effective October 1, 2003, available from U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Federal Center Building, Hyattsville, Maryland 20782, or Assistant District Director, USDA/APHIS-VS, Virginia Area Office, 7th Floor, Federal Building, 400 North 8th Street, Richmond, Virginia 23240

<u>Drug Residue Test Methods for Confirmation of Presumptive Positive Results and Initial Producer Trace Back, M-I-96-10 (Revision #8), March 22, 2012, published by the Food and Drug Administration, Dairy and Egg Branch (HFS 316), 5100 Paint Branch Parkway, College Park, Maryland 20740-3835</u>

Evaluation of Milk Laboratories, 2011 Revision, published by the Food and Drug Administration Laboratory Proficiency and Evaluation Team, HFH-450, 6502 South Archer Road, Bedford Park, Illinois 60501

Grade "A" Pasteurized Milk Ordinance, 2013 Revision, published by the Food and Drug Administration, Milk Safety Branch (HFS-626), 5100 Paint Branch Parkway, College Park, Maryland 20740-3835

Official Grade "A" Pasteurized Milk Ordinance Regulatory Laboratory Tests for Grade "A" Milk and Milk Products and Grade "A" Dairy Farm and Milk Plant Water, "M-a-98", March 1, 2013

Official Methods of Analysis of [the Association of] AOAC International, 19th Edition, 2012, published by [the Association of Official Analytical Chemists AOAC] International, 481 North Frederick Avenue, Suite 500, Gaithersburg, Maryland 20877-2417

VA.R. Doc. No. R14-4028; Filed January 21, 2015, 10:23 a.m.

TITLE 4. CONSERVATION AND NATURAL RESOURCES

MARINE RESOURCES COMMISSION

Emergency Regulation

<u>Title of Regulation:</u> **4VAC20-450. Pertaining to the Taking of Bluefish (amending 4VAC20-450-30).**

Statutory Authority: §§ 28.2-201 and 28.2-210 of the Code of Virginia.

Effective Dates: January 28, 2015, through February 26, 2015.

Agency Contact: Jane Warren, Agency Regulatory Coordinator, Marine Resources Commission, 2600 Washington Avenue, 3rd Floor, Newport News, VA 23607, telephone (757) 247-2248, FAX (757) 247-2002, or email betty.warren@mrc.virginia.gov.

Preamble:

The amendments establish the annual commercial bluefish quota as 608,230 pounds.

4VAC20-450-30. Commercial landings quota.

A. <u>During the period of January 1 through December 31, The annual commercial landings of bluefish shall be limited to 886,040 608,230 pounds in 2014.</u>

B. When it is projected that 95% of the commercial landings quota has been realized, a notice will be posted to close commercial harvest and landings from the bluefish fishery within five days of posting.

C. It shall be unlawful for any person to harvest or land bluefish for commercial purposes after the closure date set forth in the notice described in subsection B of this section.

VA.R. Doc. No. R15-4271; Filed January 28, 2015, 1:32 p.m.

Final Regulation

<u>REGISTRAR'S NOTICE:</u> The Marine Resources Commission is claiming an exemption from the Administrative Process Act in accordance with § 2.2-4006 A 11 of the Code of Virginia; however, the commission is required to publish the full text of final regulations.

<u>Title of Regulation:</u> **4VAC20-950. Pertaining to Black Sea Bass (amending 4VAC20-950-47).**

Statutory Authority: § 28.2-201 of the Code of Virginia.

Effective Date: January 31, 2015.

Agency Contact: Jane Warren, Agency Regulatory Coordinator, Marine Resources Commission, 2600 Washington Avenue, 3rd Floor, Newport News, VA 23607, telephone (757) 247-2248, FAX (757) 247-2002, or email betty.warren@mrc.virginia.gov.

Summary:

The amendments establish the annual commercial black sea bass directed fishery quota as 402,584 pounds and the annual commercial black sea bass bycatch fishery quota as 40,000 pounds.

4VAC20-950-47. Commercial harvest quotas.

A. The 2014 annual commercial black sea bass directed fishery quota is 394,000 402,584 pounds. When it has been announced that the directed fishery quota has been projected as reached and the directed fishery has been closed, it shall be unlawful for any directed commercial black sea bass fishery permittee to possess aboard any vessel or land in Virginia any black sea bass.

B. The 2014 annual commercial black sea bass bycatch fishery quota is 40,000 pounds. When it has been announced that the bycatch fishery quota has been projected as reached and the bycatch fishery has been closed, it shall be unlawful for any bycatch commercial black sea bass fishery permittee to possess aboard any vessel or land in Virginia any black sea bass. In the event the bycatch fishery quota is exceeded, the amount of the quota overage shall be deducted from the following year's bycatch fishing quota.

VA.R. Doc. No. R15-4270; Filed January 28, 2015, 2:17 p.m.

TITLE 9. ENVIRONMENT

STATE AIR POLLUTION CONTROL BOARD

Final Regulation

REGISTRAR'S NOTICE: The following regulatory action is exempt from Article 2 of the Administrative Process Act in accordance with § 2.2-4006 A 4 c of the Code of Virginia, which excludes regulations that are necessary to meet the requirements of federal law or regulations provided such regulations do not differ materially from those required by federal law or regulation. The State Air Pollution Control Board will receive, consider, and respond to petitions by any interested person at any time with respect to reconsideration or revision.

Title of Regulation: 9VAC5-20. General Provisions (Rev. G14) (amending 9VAC5-20-203, 9VAC5-20-204).

Statutory Authority: § 10.1-1308 of the Code of Virginia; §§ 110 and 182 of the federal Clean Air Act; 40 CFR Part 51.

Effective Date: March 11, 2015.

Agency Contact: Karen G. Sabasteanski, Department of Environmental Quality, 629 East Main Street, P.O. Box 1105, Richmond, VA 23218, telephone (804) 698-4426, FAX (804) 698-4510, or email karen.sabasteanski@deq.virginia.gov.

Summary:

On October 6, 2014 (79 FR 60081), the U.S. Environmental Protection Agency approved a request that localities (Counties of Arlington, Fairfax, Loudoun, and Prince William and Cities of Alexandria, Fairfax, Falls Church, Manassas, and Manassas Park) in the Northern Virginia area designated as nonattainment for very fine particulate matter (PM_{2.5}) be redesignated to attainment/maintenance. The amendments (i) revise the list of maintenance areas to include Northern Virginia for $PM_{2.5}$ (9VAC5-20-203) and (ii) revise the list of nonattainment areas to remove Northern Virginia for $PM_{2.5}$ (9VAC5-20-204).

9VAC5-20-203. Maintenance areas.

Maintenance areas are geographically defined below by locality for the criteria pollutants indicated.

1. Ozone.

Fredericksburg Ozone Maintenance Area.

Spotsylvania County **Stafford County** Fredericksburg City

Hampton Roads Ozone Maintenance Area.

Gloucester County Isle of Wight County James City County York County Chesapeake City

Hampton City

Newport News City

Norfolk City

Poquoson City

Portsmouth City

Suffolk City

Virginia Beach City

Williamsburg City

Richmond Ozone Maintenance Area.

Charles City County

Chesterfield County

Hanover County

Henrico County

Prince George County

Colonial Heights City

Hopewell City

Petersburg City

Richmond City

Shenandoah National Park Ozone Maintenance Area.

Madison County (portions located in Shenandoah National Park)

Page County (portions located in Shenandoah National Park)

2. Carbon monoxide.

Northern Virginia Carbon Monoxide Maintenance Area.

Arlington County

Alexandria City

3. PM_{2.5} (particles with an aerodynamic diameter less than or equal to a nominal 2.5 micrometers).

Northern Virginia PM_{2.5} Maintenance Area.

Arlington County

Fairfax County

Loudoun County

Prince William County

Alexandria City

Fairfax City

Falls Church City

Manassas City

Manassas Park City

4. All other pollutants.

None.

9VAC5-20-204. Nonattainment areas.

A. Nonattainment areas are geographically defined below by locality for the criteria pollutants indicated. Following the name of each ozone nonattainment area, in parentheses, is the classification assigned pursuant to § 181(a) of the federal Clean Air Act (42 USC § 7511(a)), 40 CFR 51.903(a), and 40 CFR 51.1103(a).

1. Ozone (1-hour).

Northern Virginia Ozone Nonattainment Area (severe).

Arlington County

Fairfax County

Loudoun County

Prince William County

Stafford County

Alexandria City

Fairfax City

Falls Church City

Manassas City

Manassas Park City

2. Ozone (8-hour, 0.08 ppm).

Northern Virginia Ozone Nonattainment Area (moderate).

Arlington County

Fairfax County

Loudoun County

Prince William County

Alexandria City

Fairfax City

Falls Church City

Manassas City

Manassas Park City

3. Ozone (8-hour, 0.075 ppm).

Northern Virginia Ozone Nonattainment Area (marginal).

Arlington County

Fairfax County

Loudoun County

Prince William County

Alexandria City

Fairfax City

Falls Church City

Manassas City

Manassas Park City

4. PM_{2.5} (particles with an aerodynamic diameter less than or equal to a nominal 2.5 micrometers).

Northern Virginia PM_{2.5} Nonattainment Area.

Arlington County Fairfax County

Loudoun County Prince William County Alexandria City Fairfax City

Falls Church City

Manassas City

Manassas Park City

5. 4. All other pollutants.

None.

B. Subdivision A 1 of this section shall not be effective after June 15, 2005.

VA.R. Doc. No. R15-4183; Filed January 7, 2015, 1:45 p.m.

Final Regulation

REGISTRAR'S NOTICE: The following regulatory action is exempt from Article 2 of the Administrative Process Act in accordance with § 2.2-4006 A 4 c of the Code of Virginia, which excludes regulations that are necessary to meet the requirements of federal law or regulations provided such regulations do not differ materially from those required by federal law or regulation. The State Air Pollution Control Board will receive, consider, and respond to petitions by any interested person at any time with respect to reconsideration or revision.

Titles of Regulations: 9VAC5-50. New and Modified Stationary Sources (Rev. H14) (amending 9VAC5-50-400, 9VAC5-50-410).

9VAC5-60. Hazardous Air Pollutant Sources (Rev. H14) (amending 9VAC5-60-60, 9VAC5-60-90).

Statutory Authority: § 10.1-1308 of the Code of Virginia; § 112 of the Clean Air Act; 40 CFR Parts 61 and 63.

Effective Date: March 11, 2015.

Agency Contact: Karen G. Sabasteanski, Department of Environmental Quality, 629 East Main Street, P.O. Box 1105, Richmond, VA 23218, telephone (804) 698-4426, FAX (804) 698-4510, or email karen.sabasteanski@deq.virginia.gov.

Summary:

The amendments update state regulations that incorporate by reference certain federal regulations to reflect the Code of Federal Regulations as published on July 1, 2014. The new standards that are being incorporated into the regulations by reference are:

- 1. One new NSPS is being added: Subpart BBa, Kraft Pulp Affected Sources for which Construction, Reconstruction, or Modification Commenced after May 23, 2013 (40 CFR 60.60.280a through 40 CFR 60.288a). The date of the Code of Federal Regulations book being incorporated by reference is being updated to the latest version.
- 2. No new NESHAPs are being incorporated. The date of the Code of Federal Regulations book being incorporated by reference is being updated to the latest version.

3. No new MACTs are being incorporated. The date of the Code of Federal Regulations book being incorporated by reference is being updated to the latest version.

Article 5

Environmental Protection Agency Standards of Performance for New Stationary Sources (Rule 5-5)

9VAC5-50-400. General.

The U.S. Environmental Protection Agency Regulations on Standards of Performance for New Stationary Sources (NSPSs), as promulgated in 40 CFR Part 60 and designated in 9VAC5-50-410 are, unless indicated otherwise, incorporated by reference into the regulations of the board as amended by the word or phrase substitutions given in 9VAC5-50-420. The complete text of the subparts in 9VAC5-50-410 incorporated herein by reference is contained in 40 CFR Part 60. The 40 CFR section numbers appearing under each subpart in 9VAC5-50-410 identify the specific provisions of the subpart incorporated by reference. The specific version of the provision adopted by reference shall be that contained in the CFR (2013) (2014) in effect July 1, 2013 2014. In making reference to the Code of Federal Regulations, 40 CFR Part 60 means Part 60 of Title 40 of the Code of Federal Regulations; 40 CFR 60.1 means 60.1 in Part 60 of Title 40 of the Code of Federal Regulations.

9VAC5-50-410. Designated standards of performance.

Subpart A - General Provisions.

40 CFR 60.1 through 40 CFR 60.3, 40 CFR 60.7, 40 CFR 60.8, 40 CFR 60.11 through 40 CFR 60.15, 40 CFR 60.18 through 40 CFR 60.19

(applicability, definitions, units and abbreviations, notification and recordkeeping, performance tests, compliance, circumvention, monitoring requirements, modification, reconstruction, general control device requirements, and general notification and reporting requirements)

Subpart B - Not applicable.

Subpart C - Not applicable.

Subpart Ca - Reserved.

Subpart Cb - Not applicable.

Subpart Cc - Not applicable.

Subpart Cd - Not applicable.

Subpart Ce - Not applicable.

Subpart D - Fossil Fuel-Fired Steam Generators.

40 CFR 60.40 through 40 CFR 60.46

(fossil fuel-fired steam generating units of more than 250 million Btu per hour heat input rate, and fossil fuel-fired and wood residue-fired steam generating units capable of firing fossil fuel at a heat input rate of more than 250 million Btu per hour)

Subpart Da - Electric Utility Steam Generating Units.

40 CFR 60.40Da through 40 CFR 60.52Da

(electric utility steam generating units capable of combusting more than 250 million Btu per hour heat input of fossil fuel (either alone or in combination with any other fuel), and for which construction, reconstruction, or modification is commenced after September 18, 1978)

Subpart Db - Industrial-Commercial-Institutional Steam Generating Units.

40 CFR 60.40b through 40 CFR 60.49b

(industrial-commercial-institutional steam generating units which have a heat input capacity from combusted fuels of more than 100 million Btu per hour)

Subpart Dc - Small Industrial-Commercial-Institutional Steam Generating Units.

40 CFR 60.40c through 40 CFR 60.48c

(industrial-commercial-institutional steam generating units which have a heat input capacity of 100 million Btu per hour or less, but greater than or equal to 10 million Btu per hour)

Subpart E - Incinerators.

40 CFR 60.50 through 40 CFR 60.54

(incinerator units of more than 50 tons per day charging rate)

Subpart Ea - Municipal Waste Combustors for which Construction is Commenced after December 20, 1989, and on or before September 20, 1994.

40 CFR 60.50a through 40 CFR 60.59a

(municipal waste combustor units with a capacity greater than 250 tons per day of municipal-type solid waste or refuse-derived fuel)

Subpart Eb - Large Municipal Combustors for which Construction is Commenced after September 20, 1994, or for which Modification or Reconstruction is Commenced after June 19, 1996.

40 CFR 60.50b through 40 CFR 60.59b

(municipal waste combustor units with a capacity greater than 250 tons per day of municipal-type solid waste or refuse-derived fuel)

Subpart Ec - Hospital/Medical/Infectious Waste Incinerators for which Construction is Commenced after June 20, 1996.

40 CFR 60.50c through 40 CFR 60.58c

(hospital/medical/infectious waste incinerators that combust any amount of hospital waste and medical/infectious waste or both)

Subpart F - Portland Cement Plants.

40 CFR 60.60 through 40 CFR 60.66

(kilns, clinker coolers, raw mill systems, finish mill systems, raw mill dryers, raw material storage, clinker storage, finished product storage, conveyor transfer points, bagging and bulk loading and unloading systems)

Subpart G - Nitric Acid Plants.

40 CFR 60.70 through 40 CFR 60.74

(nitric acid production units)

Subpart Ga - Nitric Acid Plants for which Construction, Reconstruction, or Modification Commenced after October 14, 2011.

40 CFR 60.70a through 40 CFR 60.77a

(nitric acid production units producing weak nitric acid by either the pressure or atmospheric pressure process)

Subpart H - Sulfuric Acid Plants.

40 CFR 60.80 through 40 CFR 60.85

(sulfuric acid production units)

Subpart I - Hot Mix Asphalt Facilities.

40 CFR 60.90 through 40 CFR 60.93

(dryers; systems for screening, handling, storing and weighing hot aggregate; systems for loading, transferring and storing mineral filler; systems for mixing asphalt; and the loading, transfer and storage systems associated with emission control systems)

Subpart J - Petroleum Refineries.

40 CFR 60.100 through 40 CFR 60.106

(fluid catalytic cracking unit catalyst regenerators, fluid catalytic cracking unit incinerator-waste heat boilers and fuel gas combustion devices)

Subpart Ja - Petroleum Refineries for which Construction, Reconstruction, or Modification Commenced after May 14, 2007.

40 CFR 60.100a through 40 CFR 60.109a

(fluid catalytic cracking units, fluid coking units, delayed coking units, fuel gas combustion devices, including flares and process heaters, and sulfur recovery plants)

Subpart K - Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced after June 11, 1973, and prior to May 19, 1978.

40 CFR 60.110 through 40 CFR 60.113

(storage vessels with a capacity greater than 40,000 gallons)

Subpart Ka - Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced after May 18, 1978, and prior to July 23, 1984.

40 CFR 60.110a through 40 CFR 60.115a

(storage vessels with a capacity greater than 40,000 gallons)

Subpart Kb - Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for which Construction, Reconstruction, or Modification Commenced after July 23, 1984.

40 CFR 60.110b through 40 CFR 60.117b

(storage vessels with capacity greater than or equal to 10,566 gallons)

Subpart L - Secondary Lead Smelters.

40 CFR 60.120 through 40 CFR 60.123

(pot furnaces of more than 550 pound charging capacity, blast (cupola) furnaces and reverberatory furnaces)

Subpart M - Secondary Brass and Bronze Production Plants.

40 CFR 60.130 through 40 CFR 60.133

(reverberatory and electric furnaces of 2205 pound or greater production capacity and blast (cupola) furnaces of 550 pounds per hour or greater production capacity)

Subpart N - Primary Emissions from Basic Oxygen Process Furnaces for which Construction is Commenced after June 11, 1973.

40 CFR 60.140 through 40 CFR 60.144

(basic oxygen process furnaces)

Subpart Na - Secondary Emissions from Basic Oxygen Process Steelmaking Facilities for which Construction is Commenced after January 20, 1983.

40 CFR 60.140a through 40 CFR 60.145a

(facilities in an iron and steel plant: top-blown BOPFs and hot metal transfer stations and skimming stations used with bottom-blown or top-blown BOPFs)

Subpart O - Sewage Treatment Plants.

40 CFR 60.150 through 40 CFR 60.154

(incinerators that combust wastes containing more than 10% sewage sludge (dry basis) produced by municipal sewage treatment plants or incinerators that charge more than 2205 pounds per day municipal sewage sludge (dry basis))

Subpart P - Primary Copper Smelters.

40 CFR 60.160 through 40 CFR 60.166

(dryers, roasters, smelting furnaces, and copper converters)

Subpart Q - Primary Zinc Smelters.

40 CFR 60.170 through 40 CFR 60.176

(roasters and sintering machines)

Subpart R - Primary Lead Smelters

40 CFR 60.180 through 40 CFR 60.186

(sintering machines, sintering machine discharge ends, blast furnaces, dross reverberatory furnaces, electric smelting furnaces and converters)

Subpart S - Primary Aluminum Reduction Plants.

40 CFR 60.190 through 40 CFR 60.195

(potroom groups and anode bake plants)

Subpart T - Phosphate Fertilizer Industry: Wet-Process Phosphoric Acid Plants.

40 CFR 60.200 through 40 CFR 60.204

(reactors, filters, evaporators, and hot wells)

Subpart U - Phosphate Fertilizer Industry: Superphosphoric Acid Plants.

40 CFR 60.210 through 40 CFR 60.214

(evaporators, hot wells, acid sumps, and cooling tanks)

Subpart V - Phosphate Fertilizer Industry: Diammonium Phosphate Plants.

40 CFR 60.220 through 40 CFR 60.224

(reactors, granulators, dryers, coolers, screens, and mills)

Subpart W - Phosphate Fertilizer Industry: Triple Superphosphate Plants.

40 CFR 60.230 through 40 CFR 60.234

(mixers, curing belts (dens), reactors, granulators, dryers, cookers, screens, mills, and facilities which store run-of-pile triple superphosphate)

Subpart X - Phosphate Fertilizer Industry: Granular Triple Superphosphate Storage Facilities.

40 CFR 60.240 through 40 CFR 60.244

(storage or curing piles, conveyors, elevators, screens and mills)

Subpart Y - Coal Preparation and Processing Plants.

40 CFR 60.250 through 40 CFR 60.258

(plants which process more than 200 tons per day: thermal dryers, pneumatic coal-cleaning equipment (air tables), coal processing and conveying equipment (including breakers and crushers), coal storage systems, and coal transfer and loading systems)

Subpart Z - Ferroalloy Production Facilities.

40 CFR 60.260 through 40 CFR 60.266

(electric submerged arc furnaces which produce silicon metal, ferrosilicon, calcium silicon, silicomanganese zirconium, ferrochrome silicon, silvery iron, high-carbon ferrochrome, charge chrome, standard ferromanganese, silicomanganese, ferromanganese silicon or calcium carbide; and dust-handling equipment)

Subpart AA - Steel Plants: Electric Arc Furnaces Constructed after October 21, 1974, and on or before August 17, 1983.

40 CFR 60.270 through 40 CFR 60.276

(electric arc furnaces and dust-handling systems that produce carbon, alloy or specialty steels)

Subpart AAa - Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed after August 17, 1983.

40 CFR 60.270a through 40 CFR 60.276a

(electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems that produce carbon, alloy, or specialty steels)

Subpart BB - Kraft Pulp Mills.

40 CFR 60.280 through 40 CFR 60.285

(digester systems, brown stock washer systems, multiple effect evaporator systems, black liquor oxidation systems, recovery furnaces, smelt dissolving tanks, lime kilns, condensate strippers and kraft pulping operations)

<u>Subpart BBa - Kraft Pulp Mill Affected Sources for which Construction, Reconstruction, or Modification Commenced after May 23, 2013.</u>

40 CFR 60.280a through 40 CFR 60.288a

(digester systems, brown stock washer systems, multiple effect evaporator systems, black liquor oxidation systems, recovery furnaces, smelt dissolving tanks, lime kilns, condensate strippers, and kraft pulping operations)

Subpart CC - Glass Manufacturing Plants.

40 CFR 60.290 through 40 CFR 60.296

(glass melting furnaces)

Subpart DD - Grain Elevators.

40 CFR 60.300 through 40 CFR 60.304

(grain terminal elevators/grain storage elevators: truck unloading stations, truck loading stations, barge and ship unloading stations, barge and ship loading stations, railcar unloading stations, railcar loading stations, grain dryers, and all grain handling operations)

Subpart EE - Surface Coating of Metal Furniture.

40 CFR 60.310 through 40 CFR 60.316

(metal furniture surface coating operations in which organic coatings are applied)

Subpart FF - (Reserved).

Subpart GG - Stationary Gas Turbines.

40 CFR 60.330 through 40 CFR 60.335

(stationary gas turbines with a heat input at peak load equal to or greater than 10 million Btu per hour, based on the lower heating value of the fuel fired)

Subpart HH - Lime Manufacturing Plants.

40 CFR 60.340 through 40 CFR 60.344

(each rotary lime kiln)

Subparts II through JJ - (Reserved).

Subpart KK - Lead-Acid Battery Manufacturing Plants.

40 CFR 60.370 through 40 CFR 60.374

(lead-acid battery manufacturing plants that produce or have the design capacity to produce in one day (24 hours) batteries containing an amount of lead equal to or greater than 6.5 tons: grid casting facilities, paste mixing facilities, three-process operation facilities, lead oxide manufacturing facilities, lead reclamation facilities, and other leademitting operations) Subpart LL - Metallic Mineral Processing Plants.

40 CFR 60.380 through 40 CFR 60.386

(each crusher and screen in open-pit mines; each crusher, screen, bucket elevator, conveyor belt transfer point, thermal dryer, product packaging station, storage bin, enclosed storage area, truck loading station, truck unloading station, railcar loading station, and railcar unloading station at the mill or concentrator with the following exceptions. All facilities located in underground mines are exempted from the provisions of this subpart. At uranium ore processing plants, all facilities subsequent to and including the benefication of uranium ore are exempted from the provisions of this subpart)

Subpart MM - Automobile and Light Duty Truck Surface Coating Operations.

40 CFR 60.390 through 40 CFR 60.397

(prime coat operations, guide coat operations, and top-coat operations)

Subpart NN - Phosphate Rock Plants.

40 CFR 60.400 through 40 CFR 60.404

(phosphate rock plants which have a maximum plant production capacity greater than 4 <u>four</u> tons per hour: dryers, calciners, grinders, and ground rock handling and storage facilities, except those facilities producing or preparing phosphate rock solely for consumption in elemental phosphorous production)

Subpart OO - Reserved.

Subpart PP - Ammonium Sulfate Manufacture.

40 CFR 60.420 through 40 CFR 60.424

(ammonium sulfate dryer within an ammonium sulfate manufacturing plant in the caprolactum by-product, synthetic, and coke oven by-product sectors of the ammonium sulfate industry)

Subpart QQ - Graphic Arts Industry: Publication Rotogravure Printing.

40 CFR 60.430 through 40 CFR 60.435

(publication rotogravure printing presses, except proof presses)

Subpart RR - Pressure Sensitive Tape and Label Surface Coating Operations.

40 CFR 60.440 through 40 CFR 60.447

(pressure sensitive tape and label material coating lines)

Subpart SS - Industrial Surface Coating: Large Appliances.

40 CFR 60.450 through 40 CFR 60.456

(surface coating operations in large appliance coating lines)

Subpart TT - Metal Coil Surface Coating.

40 CFR 60.460 through 40 CFR 60.466

(metal coil surface coating operations: each prime coat operation, each finish coat operation, and each prime and finish coat operation combined when the finish coat is applied wet on wet over the prime coat and both coatings are cured simultaneously)

Subpart UU - Asphalt Processing and Asphalt Roofing Manufacture.

40 CFR 60.470 through 40 CFR 60.474

(each saturator and each mineral handling and storage facility at asphalt roofing plants; and each asphalt storage tank and each blowing still at asphalt processing plants, petroleum refineries, and asphalt roofing plants)

Subpart VV - Equipment Leaks of Volatile Organic Compounds in the Synthetic Organic Chemicals Manufacturing Industry for which Construction, Reconstruction, or Modification Commenced After after January 5, 1981, and On on or Before before November 7, 2006.

40 CFR 60.480 through 40 CFR 60.489

(all equipment within a process unit in a synthetic organic chemicals manufacturing plant)

Subpart VVa - Equipment Leaks of VOC in the Synthetic Organic Chemicals Manufacturing Industry for Which which Construction, Reconstruction, or Modification Commenced After after November 7, 2006.

40 CFR 60.480a through 40 CFR 60.489a

(all equipment within a process unit in a synthetic organic chemicals manufacturing plant)

Subpart WW - Beverage Can Surface Coating Industry.

40 CFR 60.490 through 40 CFR 60.496

(beverage can surface coating lines: each exterior base coat operation, each overvarnish coating operation, and each inside spray coating operation)

Subpart XX - Bulk Gasoline Terminals.

40 CFR 60.500 through 40 CFR 60.506

(total of all loading racks at a bulk gasoline terminal which deliver liquid product into gasoline tank trucks)

Subparts YY through ZZ - (Reserved).

Subpart AAA - New Residential Wood Heaters.

40 CFR 60.530 through 40 CFR 60.539b

(wood heaters)

Subpart BBB - Rubber Tire Manufacturing Industry.

40 CFR 60.540 through 40 CFR 60.548

(each undertread cementing operation, each sidewall cementing operation, each tread end cementing operation, each bead cementing operation, each green tire spraying operation, each Michelin-A operation, each Michelin-B operation, and each Michelin-C automatic operation)

Subpart CCC - (Reserved).

Subpart DDD - Volatile Organic Compound (VOC) Emissions from the Polymer Manufacturing Industry.

40 CFR 60.560 through 40 CFR 60.566

(for polypropylene and polyethylene manufacturing using a that emits continuous process continuously intermittently: all equipment used in the manufacture of these polymers. For polystyrene manufacturing using a continuous process that emits continuously: each material recovery section. For poly(ethylene terephthalate) manufacturing using a continuous process that emits continuously: each polymerization reaction section; if dimethyl terephthalate is used in the process, each material recovery section is also an affected facility; if terephthalic acid is used in the process, each raw materials preparation section is also an affected facility. For VOC emissions from equipment leaks: each group of fugitive emissions process unit, equipment within any poly(ethylene terephthalate) manufacture.)

Subpart EEE - (Reserved).

Subpart FFF - Flexible Vinyl and Urethane Coating and Printing.

40 CFR 60.580 through 40 CFR 60.585

(each rotogravure printing line used to print or coat flexible vinyl or urethane products)

Subpart GGG - Equipment Leaks of VOC in Petroleum Refineries for which Construction, Reconstruction, or Modification Commenced After after January 4, 1983, and On on Petroleum Petroleum

40 CFR 60.590 through 40 CFR 60.593

(each compressor, valve, pump pressure relief device, sampling connection system, open-ended valve or line, and flange or other connector in VOC service)

Subpart GGGa - Equipment Leaks of VOC in Petroleum Refineries for which Construction, Reconstruction, or Modification Commenced After after November 7, 2006.

40 CFR 60.590a through 40 CFR 60.593a

(each compressor, valve, pump pressure relief device, sampling connection system, open-ended valve or line, and flange or other connector in VOC service)

Subpart HHH - Synthetic Fiber Production Facilities.

40 CFR 60.600 through 40 CFR 60.604

(each solvent-spun synthetic fiber process that produces more than 500 megagrams of fiber per year)

Subpart III - Volatile Organic Compound (VOC) Emissions from the Synthetic Organic Chemical Manufacturing Industry (SOCMI) Air Oxidation Unit Processes.

40 CFR 60.610 through 40 CFR 60.618

(each air oxidation reactor not discharging its vent stream into a recovery system and each combination of an air oxidation reactor or two or more air oxidation reactors and the recovery system into which the vent streams are discharged)

Subpart JJJ - Petroleum Dry Cleaners.

40 CFR 60.620 through 40 CFR 60.625

(facilities located at a petroleum dry cleaning plant with a total manufacturers' rated dryer capacity equal to or greater than 84 pounds: petroleum solvent dry cleaning dryers, washers, filters, stills, and settling tanks)

Subpart KKK - Equipment Leaks of VOC from Onshore Natural Gas Processing Plants for which Construction, Reconstruction, or Modification Commenced after January 20, 1984, and on or before August 23, 2011.

40 CFR 60.630 through 40 CFR 60.636

(each compressor in VOC service or in wet gas service; each pump, pressure relief device, open-ended valve or line, valve, and flange or other connector that is in VOC service or in wet gas service, and any device or system required by this subpart)

Subpart LLL - Sulfur Dioxide Emissions from Onshore Natural Gas Processing for which Construction, Reconstruction, or Modification Commenced after January 20, 1984, and on or before August 23, 2011.

40 CFR 60.640 through 40 CFR 60.648

(facilities that process natural gas: each sweetening unit, and each sweetening unit followed by a sulfur recovery unit)

Subpart MMM - Reserved.

Subpart NNN - Volatile Organic Compound (VOC) Emissions from Synthetic Organic Chemical Manufacturing Industry (SOCMI) Distillation Operations.

40 CFR 60.660 through 40 CFR 60.668

(each distillation unit not discharging its vent stream into a recovery system, each combination of a distillation unit or of two or more units and the recovery system into which their vent streams are discharged)

Subpart OOO - Nonmetallic Mineral Processing Plants.

40 CFR 60.670 through 40 CFR 60.676

(facilities in fixed or portable nonmetallic mineral processing plants: each crusher, grinding mill, screening operation, bucket elevator, belt conveyor, bagging operation, storage bin, enclosed truck or railcar loading station)

Subpart PPP - Wool Fiberglass Insulation Manufacturing Plants.

40 CFR 60.680 through 40 CFR 60.685

(each rotary spin wool fiberglass insulation manufacturing line)

Subpart QQQ - VOC Emissions from Petroleum Refinery Wastewater Systems.

40 CFR 60.690 through 40 CFR 60.699

(individual drain systems, oil-water separators, and aggregate facilities in petroleum refineries)

Subpart RRR - Volatile Organic Compound Emissions from Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor Processes.

40 CFR 60.700 through 40 CFR 60.708

(each reactor process not discharging its vent stream into a recovery system, each combination of a reactor process and the recovery system into which its vent stream is discharged, and each combination of two or more reactor processes and the common recovery system into which their vent streams are discharged)

Subpart SSS - Magnetic Tape Coating Facilities.

40 CFR 60.710 through 40 CFR 60.718

(each coating operation and each piece of coating mix preparation equipment)

Subpart TTT - Industrial Surface Coating: Surface Coating of Plastic Parts for Business Machines.

40 CFR 60.720 through 40 CFR 60.726

(each spray booth in which plastic parts for use in the manufacture of business machines receive prime coats, color coats, texture coats, or touch-up coats)

Subpart UUU - Calciners and Dryers in Mineral Industries.

40 CFR 60.730 through 40 CFR 60.737

(each calciner and dryer at a mineral processing plant)

Subpart VVV - Polymeric Coating of Supporting Substrates Facilities.

40 CFR 60.740 through 40 CFR 60.748

(each coating operation and any onsite coating mix preparation equipment used to prepare coatings for the polymeric coating of supporting substrates)

Subpart WWW - Municipal Solid Waste Landfills.

40 CFR 60.750 through 40 CFR 60.759

(municipal solid waste landfills for the containment of household and RCRA Subtitle D wastes)

Subpart AAAA - Small Municipal Waste Combustors for which Construction is Commenced after August 30, 1999, or for which Modification or Reconstruction is Commenced after June 6, 2001.

40 CFR 60.1000 through 40 CFR 60.1465

(municipal waste combustor units with a capacity less than 250 tons per day and greater than 35 tons per day of municipal solid waste or refuse-derived fuel)

Subpart BBBB - Not applicable.

Subpart CCCC - Commercial/Industrial Solid Waste Incinerators for which Construction is Commenced after November 30, 1999, or for which Modification or Construction is Commenced on or after June 1, 2001.

40 CFR 60.2000 through 40 CFR 60.2265

(an enclosed device using controlled flame combustion without energy recovery that is a distinct operating unit of any commercial or industrial facility, or an air curtain incinerator without energy recovery that is a distinct operating unit of any commercial or industrial facility)

Subpart DDDD - Not applicable.

Subpart EEEE - Other Solid Waste Incineration Units for which Construction is Commenced after December 9, 2004, or for which Modification or Reconstruction Is Commenced on or after June 16, 2006.

40 CFR 60.2880 through 40 CFR 60.2977

(very small municipal waste combustion units with the capacity to combust less than 35 tons per day of municipal solid waste or refuse-derived fuel, and institutional waste incineration units owned or operated by an organization having a governmental, educational, civic, or religious purpose)

Subpart FFFF - Reserved.

Subpart GGGG - Reserved.

Subpart HHHH - Reserved.

Subpart IIII - Stationary Compression Ignition Internal Combustion Engines.

40 CFR 60.4200 through 40 CFR 60.4219

(NOTE: Authority to enforce the above standard is being retained by EPA and it is not incorporated by reference into these regulations for any source that is not (i) a major source as defined in 9VAC5-80-60 and subject to Article 1 (9VAC5-80-50 et seq., Federal Operating Permits for Stationary Sources) of Part II of 9VAC5-80 (Permits for Stationary Sources) or (ii) an affected source as defined in 9VAC5-80-370 and subject to Article 3 (9VAC5-80-360 et seq., Federal Operating Permits for Acid Rain Sources) of Part II of 9VAC5-80)

Subpart JJJJ - Stationary Spark Ignition Internal Combustion Engines.

40 CFR 60.4230 through 40 CFR 60.4248

(NOTE: Authority to enforce the above standard is being retained by EPA and it is not incorporated by reference into these regulations for any source that is not (i) a major source as defined in 9VAC5-80-60 and subject to Article 1 (9VAC5-80-50 et seq., Federal Operating Permits for Stationary Sources) of Part II of 9VAC5-80 (Permits for Stationary Sources) or (ii) an affected source as defined in 9VAC5-80-370 and subject to Article 3 (9VAC5-80-360 et seq., Federal Operating Permits for Acid Rain Sources) of Part II of 9VAC5-80)

Subpart KKKK - Stationary Combustion Turbines.

40 CFR 60.4300 through 40 CFR 60.4420

(stationary combustion turbine with a heat input at peak load equal to or greater than 10.7 gigajoules (10 MMBtu) per hour)

Subpart LLLL - Sewage Sludge Incineration Units.

40 CFR 60.4760 through 40 CFR 60.4925

(an incineration unit combusting sewage sludge for the purpose of reducing the volume of the sewage sludge by removing combustible matter, including the sewage sludge feed system, auxiliary fuel feed system, grate system, flue gas system, waste heat recovery equipment, and bottom ash system; and all ash handling systems connected with the bottom ash handling system)

Subpart MMMM - Reserved.

Subpart NNNN - Reserved.

Subpart OOOO - Crude Oil and Natural Gas Production, Transmission and Distribution.

40 CFR 60.5360 through 40 CFR 60.5430

(facilities that operate gas wells, centrifugal compressors, reciprocating compressors, pneumatic controllers, and storage vessels)

Appendix A - Test methods.

Appendix B - Performance specifications.

Appendix C - Determination of Emission Rate Change.

Appendix D - Required Emission Inventory Information.

Appendix E - Reserved.

Appendix F - Quality Assurance Procedures.

Appendix G - (Not applicable).

Appendix H - Reserved.

Appendix I - Removable label and owner's manual.

Part II Emission Standards

Article 1

Environmental Protection Agency National Emission Standards for Hazardous Air Pollutants (Rule 6-1)

9VAC5-60-60. General.

The Environmental Protection Agency (EPA) Regulations on National Emission Standards for Hazardous Air Pollutants (NESHAP), as promulgated in 40 CFR Part 61 and

designated in 9VAC5-60-70 are, unless indicated otherwise, incorporated by reference into the regulations of the board as amended by the word or phrase substitutions given in 9VAC5-60-80. The complete text of the subparts in 9VAC5-60-70 incorporated herein by reference is contained in 40 CFR Part 61. The 40 CFR section numbers appearing under each subpart in 9VAC5-60-70 identify the specific provisions of the subpart incorporated by reference. The specific version of the provision adopted by reference shall be that contained in the CFR (2013) (2014) in effect July 1, 2013 2014. In making reference to the Code of Federal Regulations, 40 CFR Part 61 means Part 61 of Title 40 of the Code of Federal Regulations; 40 CFR 61.01 means 61.01 in Part 61 of Title 40 of the Code of Federal Regulations.

Article 2

Environmental Protection Agency National Emission Standards for Hazardous Air Pollutants for Source Categories (Rule 6-2)

9VAC5-60-90. General.

The Environmental Protection Agency (EPA) National Emission Standards for Hazardous Air Pollutants for Source Categories (Maximum Achievable Control Technologies, or MACTs) as promulgated in 40 CFR Part 63 and designated in 9VAC5-60-100 are, unless indicated otherwise, incorporated by reference into the regulations of the board as amended by the word or phrase substitutions given in 9VAC5-60-110. The complete text of the subparts in 9VAC5-60-100 incorporated herein by reference is contained in 40 CFR Part 63. The 40 CFR section numbers appearing under each subpart in 9VAC5-60-100 identify the specific provisions of the subpart incorporated by reference. The specific version of the provision adopted by reference shall be that contained in the CFR (2013) (2014) in effect July 1, 2013 2014. In making reference to the Code of Federal Regulations, 40 CFR Part 63 means Part 63 of Title 40 of the Code of Federal Regulations; 40 CFR 63.1 means 63.1 in Part 63 of Title 40 of the Code of Federal Regulations.

VA.R. Doc. No. R15-4184; Filed January 7, 2015, 1:46 p.m.

STATE WATER CONTROL BOARD

Final Regulation

REGISTRAR'S NOTICE: The State Water Control Board is claiming an exemption from Article 2 of the Administrative Process Act pursuant to the second enactment of Chapter 202 of the 2014 Acts of Assembly, which provides that all total maximum daily load wasteload allocations adopted or approved by the State Water Control Board prior to July 1, 2014, shall be listed in the Water Quality Management Planning Regulation (9VAC25-720) by the State Water Control Board; such action to amend the Water Quality Management Planning Regulation shall be exempt from Article 2 (§ 2.2-4006 et seq.) of the Administrative Process Act and not subject to judicial review. This required listing shall not be construed to preclude the State Water Control Board from subsequently amending or repealing the listed wasteload allocations or to affect their substantive validity. Total maximum daily load wasteload allocations subject to the cooperative solution negotiated for mining operations that were not set forth in the Water Quality Management Planning Regulation (9VAC25-720) prior to July 1, 2014, are excluded from this listing process.

<u>Title of Regulation:</u> 9VAC25-720. Water Quality Management Planning Regulation (amending 9VAC25-720-20, 9VAC25-720-50 through 9VAC25-720-130).

Statutory Authority: § 62.1-44.15 of the Code of Virginia; 33 USC § 1313(e) of the federal Clean Water Act.

Effective Date: March 11, 2015.

Agency Contact: Debra Harris, Department of Environmental Quality, 629 East Main Street, P.O. Box 1105, Richmond, VA 23218, telephone (804) 698-4209, FAX (804) 698-4019, or email debra.harris@deq.virginia.gov.

Summary:

Chapter 202 of the 2014 Acts of Assembly requires that a comprehensive listing of all total maximum daily load wasteload allocations (WLAs) adopted or approved by the State Water Control Board prior to July 1, 2014, be set forth in the Water Quality Management Planning Regulation (9VAC25-720). Therefore, this regulatory action adds WLAs to the various river basin sections of the regulation to comply with Chapter 202 of the 2014 Acts of Assembly.

9VAC25-720-20. Purpose.

The purpose of this regulation is to list by major river basin the <u>following: EPA approved and board adopted board-adopted</u> total maximum daily <u>loads (TMDLs) and the load (TMDL) wasteload allocations (WLAs),</u> stream segment classifications, <u>and</u> effluent limitations including water quality based effluent limitations, <u>and waste load allocations</u> contained in the existing water quality management plans (WQMPs). <u>Additional information is provided in the footnotes as noted in 9VAC25-720-50 through 9VAC25-720-130.</u>

9VAC25-720-50. Potomac-Shenandoah River Basin.

A. Total Maximum Daily Load maximum daily loads (TMDLs).

TMDL #	Stream Name	TMDL Title	City/County	WBID	Pollutant	$WLA^{\underline{1}}$	Units
1.	Muddy Creek	Nitrate TMDL Development for Muddy Creek/Dry River, Virginia	Rockingham	B21R	Nitrate	49,389.00	LB/YR
2.	Blacks Run	TMDL Development for Blacks Run and Cooks Creek	Rockingham	B25R	Sediment	32,844.00	LB/YR
3.	Cooks Creek	TMDL Development for Blacks Run and Cooks Creek	Rockingham	B25R	Sediment	69,301.00	LB/YR
4.	Cooks Creek	TMDL Development for Blacks Run and Cooks Creek	Rockingham	B25R	Phosphorus	0	LB/YR
5.	Muddy Creek	TMDL Development for Muddy Creek and Holmans Creek, Virginia	Rockingham	B22R	Sediment	286,939.00	LB/YR
6.	Muddy Creek	TMDL Development for Muddy Creek and Holmans Creek, Virginia	Rockingham	B22R	Phosphorus	38.00	LB/YR
7.	Holmans Creek	TMDL Development for Muddy Creek and Holmans Creek, Virginia	Rockingham/ Shenandoah	B45R	Sediment	78,141.00	LB/YR
8.	Mill Creek	TMDL Development for Mill Creek and Pleasant Run	Rockingham	B29R	Sediment	276.00	LB/YR
9.	Mill Creek	TMDL Development for Mill Creek and Pleasant Run	Rockingham	B29R	Phosphorus	138.00	LB/YR

10.	Pleasant Run	TMDL Development for Mill Creek and Pleasant Run	Rockingham	B27R	Sediment	0.00	LB/YR
11.	Pleasant Run	TMDL Development for Mill Creek and Pleasant Run	Rockingham	B27R	Phosphorus	0.00	LB/YR
12.	Linville Creek	Total Maximum Daily Load Development for Linville Creek: Bacteria and Benthic Impairments	Rockingham	B46R	Sediment	5.50	TONS/YR
13.	Quail Run	Benthic TMDL for Quail Run	Rockingham	B35R	Ammonia	7,185.00	KG/YR
14.	Quail Run	Benthic TMDL for Quail Run	Rockingham	B35R	Chlorine	27.63	KG/YR
15.	Shenandoah River	Development of Shenandoah River PCB TMDL (South Fork and Main Stem)	Warren & Clarke	B41R B55R B57R B58R	PCBs	179.38	G/YR
16.	Shenandoah River	Development of Shenandoah River PCB TMDL (North Fork)	Warren & Clarke	B51R	PCBs	0.00	G/YR
17.	Shenandoah River	Development of Shenandoah River PCB TMDL (Main Stem)	Warren & Clarke	wv	PCBs	179.38	G/YR
18.	Cockran Spring	Benthic TMDL Reports for Six Impaired Stream Segments in the Potomac-Shenandoah and James River Basins	Augusta	B10R	Organic Solids solids	1,556.00	LB/YR
19.	Lacey Spring	Benthic TMDL Reports for Six Impaired Stream Segments in the Potomac-Shenandoah and James River Basins	Rockingham	B47R	Organic Solids solids	680.00	LB/YR
20.	Orndorff Spring	Benthic TMDL Reports for Six Impaired Stream Segments in the Potomac-Shenandoah and James River Basins	Shenandoah	B52R	Organic Solids solids	103.00	LB/YR
21.	Toms Brook	Benthic TMDL for Toms Brook in Shenandoah County, Virginia	Shenandoah	B50R	Sediment	8.1	T/YR
22.	Goose Creek	Benthic TMDLs for the Goose Creek Watershed	Loudoun, Fauquier	A08R	Sediment	1,587	T/YR
23.	Little River	Benthic TMDLs for the Goose Creek Watershed	Loudoun	A08R	Sediment	105	T/YR
24.	Christians Creek	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Impaired Streams in the Middle River and Upper	Augusta	B14R	Sediment	145	T/YR

		South River Watersheds, Augusta County, VA					
25.	Moffett Creek	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Impaired Streams in the Middle River and Upper South River Watersheds, Augusta County, VA	Augusta	B13R	Sediment	0	T/YR
26.	Upper Middle River	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Impaired Streams in the Middle River and Upper South River Watersheds, Augusta County, VA	Augusta	B10R	Sediment	1.355	T/YR
27.	Mossy Creek	Total Maximum Daily Load Development for Mossy Creek and Long Glade Run: Bacteria and General Standard (Benthic) Impairments	Rockingham	B19R	Sediment	0.04	T/YR
28.	Smith Creek	Total Maximum Daily Load (TMDL) Development for Smith Creek	Rockingham, Shenandoah	B47R	Sediment	353,867	LB/YR
29.	Abrams Creek	Opequon Watershed TMDLs for Benthic Impairments: Abrams Creek and Lower Opequon Creek, Frederick and Clarke counties, Virginia	Frederick	B09R	Sediment	478	T/YR
30.	Lower Opequon Creek	Opequon Watershed TMDLs for Benthic Impairments: Abrams Creek and Lower Opequon Creek, Frederick and Clarke counties, Virginia	Frederick, Clarke	B09R	Sediment	1,039	T/YR
31.	Mill Creek	Mill Creek Sediment TMDL for a Benthic Impairment, Shenandoah County, Virginia	Shenandoah	B48R	Sediment	0.9	T/YR
32.	South Run	Benthic TMDL Development for South Run, Virginia	Fauquier	A19R	Phosphorus	0.038	T/YR
33.	Lewis Creek	Total Maximum Daily Load Development for Lewis Creek, General Standard (Benthic)	Augusta	B12R	Sediment	40	T/YR

34.	Lewis Creek	Total Maximum Daily Load Development for Lewis Creek, General Standard (Benthic)	Augusta	B12R	Lead	0	KG/YR
35.	Lewis Creek	Total Maximum Daily Load Development for Lewis Creek, General Standard (Benthic)	Augusta	B12R	PAHs	0	KG/YR
36.	Bull Run	Total Maximum Daily Load Development for Lewis Creek, General Standard (Benthic)	Loudoun, Fairfax, and Prince William counties, and the Cities of Manassas and Manassas Park	A23R-01	Sediment	5,986.8	T/TR
37.	Popes Head Creek	Total Maximum Daily Load Development for Lewis Creek, General Standard (Benthic)	Fairfax County and Fairfax City	A23R-02	Sediment	1,594.2	T/YR
38.	Accotink Bay	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Fairfax	A15R	PCBs	0.0992	G/YR
39.	Aquia Creek	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Stafford	A28E	PCBs	6.34	G/YR
40.	Belmont Bay/ Occoquan Bay	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Prince William	A25E	PCBs	0.409	G/YR
41.	Chopawamsic Creek	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Prince William	A26E	PCBs	1.35	G/YR
42.	Coan River	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Northumberland	A34E	PCBs	0	G/YR
43.	Dogue Creek	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Fairfax	A14E	PCBs	20.2	G/YR
44.	Fourmile Run	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Arlington	A12E	PCBs	11	G/YR

45.	Gunston Cove	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Fairfax	A15E	PCBs	0.517	G/YR
46.	Hooff Run & Hunting Creek	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Fairfax	A13E	PCBs	36.8	G/YR
47.	Little Hunting Creek	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Fairfax	A14E	PCBs	10.1	G/YR
48.	Monroe Creek	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Fairfax	A31E	PCBs	.0177	G/YR
49.	Neabsco Creek	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Prince William	A25E	PCBs	6.63	G/YR
50.	Occoquan River	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Prince William	A25E	PCBs	2.86	G/YR
51.	Pohick Creek/Pohick Bay	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Fairfax	A16E	PCBs	13.5	G/YR
52.	Potomac Creek	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Stafford	A29E	PCBs	0.556	G/YR
53.	Potomac River, Fairview Beach	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	King George	A29E	PCBs	0.0183	G/YR
54.	Powells Creek	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Prince William	A26R	PCBs	0.0675	G/YR

55.	Quantico Creek	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	Prince William	A26R	PCBs	0.742	G/YR
56.	Upper Machodoc Creek	PCB Total Maximum Daily Load Development in the tidal Potomac and Anacostia Rivers and their tidal tributaries	King George	A30E	PCBs	0.0883	G/YR
57.	Difficult Creek	Benthic TMDL Development for Difficult Run, Virginia	Fairfax	A11R	Sediment	3,663.2	T/YR
58.	Abrams Creek	Opequon Watershed TMDLs for Benthic Impairments	Frederick and Clark	B09R	Sediment	1039	T/YR
59.	Lower Opequon	Opequon Watershed TMDLs for Benthic Impairments	Frederick and Clark	B09R	Sediment	1039	T/YR
60.	South River	Bacteria and Benthic Total Maximum Daily Load Development for South River	Augusta and Rockingham	B32R	Sediment	619.4	T/YR
61.	South River	Bacteria and Benthic Total Maximum Daily Load Development for South River	Augusta and Rockingham	B32R	Phosphorus	6,929.9	KG/YR
62.	South River	Total Maximum Daily Load Development for Mercury in the South River, South Fork Shenandoah River, and Shenandoah River, Virginia	Augusta, Rockingham, Page, and Warren	B32R	Mercury	112	G/YR
63.	South Fork Shenandoah River	Total Maximum Daily Load Development for Mercury in the South River, South Fork Shenandoah River, and Shenandoah River, Virginia	Augusta, Rockingham, Page, and Warren	B32R, B33R	Mercury	112	G/YR
64.	Shenandoah River	Total Maximum Daily Load Development for Mercury in the South River, South Fork Shenandoah River, and Shenandoah River, Virginia	Augusta, Rockingham, Page, and Warren	B32R, B33R	Mercury	112	G/YR

65.	Spout Run	Total Maximum Daily Load Development to Address Bacteria and Benthic Impairments in the Spout Run Watershed, Clarke County, Virginia	Clarke	B57R	Sediment	7.44	T/YR
66.	West Strait Creek	Benthic Total Maximum Daily Load Development for Strait Creek and West Strait Creek	Highland	B02R	Sediment	0.02	T/D
67.	West Strait Creek	Benthic Total Maximum Daily Load Development for Strait Creek and West Strait Creek	Highland	B02R	CBOD ₅	11	KG/D
68.	West Strait Creek	Benthic Total Maximum Daily Load Development for Strait Creek and West Strait Creek	Highland	B02R	Dry season (June – December) ammonia as N	1.6	KG/D
69.	West Strait Creek	Benthic Total Maximum Daily Load Development for Strait Creek and West Strait Creek	Highland	B02R	Wet season (January – May) ammonia as N	2.9	KG/D
70.	Strait Creek	Benthic Total Maximum Daily Load Development for Strait Creek and West Strait Creek	Highland	B02R	Sediment	0.08	T/D
<u>71.</u>	Accotink Creek, lower	Bacteria TMDL for the Lower Accotink Creek Watershed	<u>Fairfax</u>	<u>A15</u>	E. coli	1.76E+12	cfu/year
<u>72.</u>	Accotink Creek	Fecal Coliform TMDL for Accotink Creek	Fairfax, Fairfax City	<u>A15</u>	Fecal coliform	1.30E+14	cfu/year
<u>73.</u>	Beaver Creek	Bacteria Total Maximum Daily Load Development for Beaver Creek	Rockingham	<u>B18</u>	<u>E. coli</u>	1.22E+10	cfu/year
<u>74.</u>	Blacks Run	Fecal Coliform TMDL for Blacks Run	<u>Harrisonburg</u>	<u>B26</u>	Fecal coliform	5.52E+09	cfu/year
<u>75.</u>	North Fork Catoctin Creek	Fecal Coliform TMDL Development for Catoctin Creek Impairments	Loudoun	<u>A02</u>	Fecal coliform	<u>0</u>	cfu/year
<u>76.</u>	Lower South Fork Catoctin Creek	Fecal Coliform TMDL Development for Catoctin Creek Impairments	Loudoun	<u>A02</u>	Fecal coliform	1.60E+11	cfu/year
<u>77.</u>	Upper South Fork Catoctin Creek	Fecal Coliform TMDL Development for Catoctin Creek Impairments	<u>Loudoun</u>	<u>A02</u>	Fecal coliform	4.42E+11	<u>cfu/year</u>

<u>78.</u>	Catoctin Creek	Fecal Coliform TMDL Development for Catoctin Creek Impairments	<u>Loudoun</u>	<u>A02</u>	Fecal coliform	<u>0</u>	cfu/year
<u>79.</u>	Licking Run	Bacteria TMDLs for Cedar Run and Licking Run	<u>Fauquier</u>	<u>A17</u>	<u>E. coli</u>	2.61E+09	cfu/year
80.	Cedar Run	Bacteria TMDLs for Cedar Run and Licking Run	Prince William, Fauquier	<u>A17, A18</u>	E. coli	5.58E+11	cfu/year
<u>81.</u>	<u>Christians</u> <u>Creek</u>	Fecal Coliform TMDL for Christians Creek	Augusta	<u>B14</u>	Fecal coliform	1.18E+13	cfu/year
<u>82.</u>	Coan River (145G)	Coan River Watershed Total Maximum Daily Load Report for Six Shellfish Areas Listed Due to Bacteria Contamination	Northumberland	<u>A34</u>	Fecal coliform	<u>0</u>	cfu/year
<u>83.</u>	Coan River, Headly Cove (145H)	Coan River Watershed Total Maximum Daily Load Report for Six Shellfish Areas Listed Due to Bacteria Contamination	Northumberland	<u>A34</u>	Fecal coliform	<u>0</u>	cfu/year
<u>84.</u>	Coan River, Killneck Creek (145E)	Coan River Watershed Total Maximum Daily Load Report for Six Shellfish Areas Listed Due to Bacteria Contamination	Northumberland	<u>A34</u>	Fecal coliform	<u>0</u>	cfu/year
<u>85.</u>	Coan River, Stevens Point (145F)	Coan River Watershed Total Maximum Daily Load Report for Six Shellfish Areas Listed Due to Bacteria Contamination	Northumberland	<u>A34</u>	Fecal coliform	<u>0</u>	cfu/year
<u>86.</u>	Mill Creek and the Coan River (1451)	Coan River Watershed Total Maximum Daily Load Report for Six Shellfish Areas Listed Due to Bacteria Contamination	Northumberland	<u>A34</u>	Fecal coliform	<u>0</u>	<u>cfu/year</u>
<u>87.</u>	The Glebe (145D)	Coan River Watershed Total Maximum Daily Load Report for Six Shellfish Areas Listed Due to Bacteria Contamination	Northumberland	<u>A34</u>	Fecal coliform	<u>0</u>	<u>cfu/year</u>
<u>88.</u>	Bridgeman Creek	Cod, Presley, Bridgeman, Hull, Rogers, Cubitt, and Hack Creeks Total Maximum Daily Load (TMDL) Report for Shellfish	Northumberland	<u>A34</u>	Fecal coliform	7.70E+08	MPN/day

		Condemnation Areas Listed Due to Bacteria					
		Pollution					
<u>89.</u>	Cod Creek, east	Cod, Presley, Bridgeman, Hull, Rogers, Cubitt, and Hack Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Pollution	Northumberland	<u>A34</u>	Fecal coliform	9.06E+08	MPN/day
<u>90.</u>	Rogers Creek	Cod, Presley, Bridgeman, Hull, Rogers, Cubitt, and Hack Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Pollution	Northumberland	<u>A34</u>	Fecal coliform	9.83E+08	MPN/day
<u>91.</u>	Cod Creek, west	Cod, Presley, Bridgeman, Hull, Rogers, Cubitt, and Hack Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Pollution	Northumberland	<u>A34</u>	Fecal coliform	1.53E+09	MPN/day
92.	Presley Creek	Cod, Presley, Bridgeman, Hull, Rogers, Cubitt, and Hack Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Pollution	Northumberland	<u>A34</u>	Fecal coliform	3.63E+09	MPN/day
93.	Hack Creek	Cod, Presley, Bridgeman, Hull, Rogers, Cubitt, and Hack Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Pollution	Northumberland	<u>A34</u>	Fecal coliform	3.00E+09	MPN/day
<u>94.</u>	Cubitt Creek	Cod, Presley, Bridgeman, Hull, Rogers, Cubitt, and Hack Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Pollution	Northumberland	<u>A34</u>	Fecal coliform	4.25E+09	MPN/day

<u>95.</u>	Hull Creek	Cod, Presley. Bridgeman, Hull. Rogers, Cubitt, and Hack Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Pollution	Northumberland	<u>A34</u>	Fecal coliform	1.27E+10	MPN/day
<u>96.</u>	Cooks Creek	Total Maximum Daily Load (TMDL) Development for Cooks Creek	Rockingham, Harrisonburg	<u>B25, B26</u>	Fecal coliform	<u>0</u>	cfu/year
<u>97.</u>	Cub Run	Bacteria Total Maximum Daily Load for Cub Run	Rockingham	<u>B34</u>	E. coli	1.74E+10	cfu/year
<u>98.</u>	Difficult Run	Bacteria TMDL for the Difficult Run Watershed	<u>Fairfax</u>	<u>A11</u>	E. coli	9.86E+12	cfu/year
<u>99.</u>	Dry River	Fecal Coliform TMDL for Dry River	Rockingham	B20, B21, B22	Fecal coliform	<u>0</u>	cfu/year
100.	Four Mile Run	Fecal Coliform TMDL (Total Maximum Daily Load) Development for Four Mile Run	Arlington, Alexandria	<u>A12</u>	Fecal coliform	2.04E+13	cfu/year
<u>101.</u>	Jackson Creek	Gardner, Jackson, and Bonum Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination	Westmoreland	<u>A33</u>	Fecal coliform	1.44E+09	MPN/day
102.	Gardner Creek	Gardner, Jackson, and Bonum Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination	Westmoreland	<u>A33</u>	Fecal coliform	1.96E+09	MPN/day
<u>103.</u>	Bonum Creek	Gardner, Jackson, and Bonum Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination	Westmoreland	<u>A33</u>	Fecal coliform	2.96E+09	MPN/day
<u>104.</u>	Little River	Bacteria TMDLs for the Goose Creek Watershed	<u>Fauquier</u>	<u>A08</u>	Fecal coliform	1.38E+10	cfu/year
<u>105.</u>	South Fork Sycolin Creek	Bacteria TMDLs for the Goose Creek Watershed	Loudoun	<u>A08</u>	Fecal coliform	1.41E+10	cfu/year
<u>106.</u>	Sycolin Creek	Bacteria TMDLs for the Goose Creek Watershed	Loudoun	<u>A08</u>	Fecal coliform	2.79E+10	<u>cfu/year</u>
<u>107.</u>	Cromwells Run	Bacteria TMDLs for the Goose Creek Watershed	<u>Fauquier</u>	<u>A05</u>	Fecal coliform	9.80E+10	cfu/year

<u>108.</u>	Beaverdam Creek	Bacteria TMDLs for the Goose Creek Watershed	Loudoun	<u>A07</u>	Fecal coliform	1.21E+12	cfu/year
<u>109.</u>	North Fork Goose Creek	Bacteria TMDLs for the Goose Creek Watershed	Loudoun	<u>A06</u>	Fecal coliform	3.11E+13	<u>cfu/year</u>
<u>110.</u>	Goose Creek and tributaries	Bacteria TMDLs for the Goose Creek Watershed	Loudoun, Fauquier	A04, A05, A06, A07, A08	Fecal coliform	3.88E+13	cfu/year
<u>111.</u>	Hawksbill Creek	Total Maximum Daily Load Development for Hawksbill Creek	<u>Page</u>	<u>B39</u>	E. coli	3.13E+12	cfu/year
<u>112.</u>	Hogue Creek	Total Maximum Daily Load Development for Bacteria (E. coli) Impairment in Hogue Creek	<u>Frederick</u>	<u>B06</u>	<u>E. coli</u>	6.58E+11	<u>cfu/year</u>
<u>113.</u>	Holmans Creek	Fecal Coliform TMDL Development for Holmans Creek	<u>Shenandoah</u>	<u>B45</u>	Fecal coliform	3.20E+10	cfu/year
<u>114.</u>	Holmes Run	Bacteria TMDLs for the Hunting Creek, Cameron Run, and Holmes Run Watersheds	Fairfax, Alexandria, Falls Church	<u>A13</u>	E. coli	8.38E+13	cfu/year
<u>115.</u>	Cameron Run	Bacteria TMDLs for the Hunting Creek, Cameron Run, and Holmes Run Watersheds	Fairfax, Alexandria, Falls Church	<u>A13</u>	E. coli	1.33E+14	cfu/year
<u>116.</u>	Hunting Creek	Bacteria TMDLs for the Hunting Creek, Cameron Run, and Holmes Run Watersheds	Fairfax, Alexandria, Falls Church	<u>A13</u>	E. coli	3.24E+14	cfu/year
<u>117.</u>	<u>Limestone</u> <u>Branch</u>	Bacteria TMDL for Limestone Branch	Loudoun	<u>A03</u>	E. coli	5.83E+11	cfu/year
<u>118.</u>	Linville Creek	Total Maximum Daily Load Development for Linville Creek: Bacteria and General Standard (Benthic) Impairments	Rockingham	<u>B46</u>	E. coli	1.10E+11	cfu/year
<u>119.</u>	Bridge Creek (10-9X)	Little Wicomico River Watershed TMDL for Three Shellfish Areas Listed Due to Bacteria Contamination	Northumberland	<u>A34</u>	<u>E. coli</u>	<u>0</u>	<u>cfu/year</u>
<u>120.</u>	Little Wicomico River (10-19)	Little Wicomico River Watershed TMDL for Three Shellfish Areas Listed Due to Bacteria Contamination	Northumberland	<u>A34</u>	E. coli	<u>0</u>	cfu/year
<u>121.</u>	Little Wicomico River (10-20)	Little Wicomico River Watershed TMDL for Three Shellfish Areas Listed Due to Bacteria Contamination	Northumberland	<u>A34</u>	E. coli	<u>0</u>	cfu/year

<u>122.</u>	Little Wicomico River, Cod Creek (10- 13.5Z)	Little Wicomico River Watershed TMDL for Three Shellfish Areas Listed Due to Bacteria Contamination	Northumberland	<u>A34</u>	E. coli	<u>0</u>	<u>cfu/year</u>
123.	Branson Cove	Lower Machodoc Creek Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination	Westmoreland	<u>A32</u>	Fecal coliform	4.11E+08	MPN/day
124.	Cabin Point Creek	Lower Machodoc Creek Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination	Westmoreland	<u>A32</u>	Fecal coliform	1.93E+09	MPN/day
<u>125.</u>	Glebe and Ames Creeks	Lower Machodoc Creek Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination	Westmoreland	<u>A32</u>	Fecal coliform	2.13E+09	MPN/day
<u>126.</u>	Lower Machodoc Creek	Lower Machodoc Creek Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination	Westmoreland	<u>A32</u>	Fecal coliform	9.67E+09	MPN/day
<u>127.</u>	Weatherall Creek	Lower Machodoc Creek Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination	Westmoreland	<u>A32</u>	Fecal coliform	9.95E+08	MPN/day
<u>128.</u>	Mattox Creek	Fecal Bacteria Total Maximum Daily Load Development for Mattox Creek	Westmoreland, King George	<u>A31</u>	E. coli	2.20E+06	cfu/year
<u>129.</u>	Mattox Creek	Fecal Bacteria Total Maximum Daily Load Development for Mattox Creek	Westmoreland, King George	<u>A31</u>	Enterococci	1.26E+10	cfu/year
<u>130.</u>	Mattox Creek tidal (shellfish)	Fecal Bacteria Total Maximum Daily Load Development for Mattox Creek	Westmoreland, King George	<u>A31</u>	Fecal coliform	5.03E+09	cfu/year
131.	Moffett Creek	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Impaired Streams in the Middle River and Upper South River Watersheds	<u>Augusta</u>	<u>B13</u>	E. coli	<u>0</u>	cfu/year

		Fecal Bacteria and					
132.	Polecat Draft	General Standard Total Maximum Daily Load Development for Impaired Streams in the Middle River and Upper South River Watersheds	<u>Augusta</u>	<u>B15</u>	<u>E. coli</u>	<u>0</u>	<u>cfu/year</u>
<u>133.</u>	Lewis Creek	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Impaired Streams in the Middle River and Upper South River Watersheds	Staunton	<u>B12</u>	<u>E. coli</u>	3.48E+09	<u>cfu/year</u>
<u>134.</u>	<u>Upper Middle</u> <u>River</u>	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Impaired Streams in the Middle River and Upper South River Watersheds	Augusta	B10, B11	E. coli	8.53E+09	cfu/year
<u>135.</u>	Upper South River	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Impaired Streams in the Middle River and Upper South River Watersheds	<u>Augusta</u>	<u>B30</u>	E. coli	1.06E+11	cfu/year
<u>136.</u>	Lower Middle River watershed	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Impaired Streams in the Middle River and Upper South River Watersheds	Augusta, Staunton	B10, B11, B12, B13, B14, B15	E. coli	1.24E+13	cfu/year
<u>137.</u>	Mill Creek	Total Maximum Daily Load Development Mill Creek Bacteria (E. coli) Impairment	Page	<u>B38</u>	E. coli	<u>0</u>	cfu/year
<u>138.</u>	Mill Creek	Total Maximum Daily Load (TMDL) Development for Mill Creek and Pleasant Run	Rockingham	<u>B29</u>	<u>Total</u> phosphorus	<u>116</u>	<u>lbs/year</u>
<u>139.</u>	Mill Creek and tributaries	Fecal coliform TMDL for Mill Creek Watershed	Rockingham	<u>B29</u>	Fecal coliform	<u>0</u>	cfu/year
140.	Mill Creek including unnamed tributary to Kissinger Millpond and Kissinger Millpond	Bacteria TMDL for (nontidal) Mill Creek including Un-named Tributary to Kissinger Millpond, and Kissinger Millpond	Northumberland	<u>A33</u>	E. coli	5.91E+10	cfu/year

<u>141.</u>	Monroe Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Monroe Bay: Monroe Creek	Westmoreland	<u>A31</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>142.</u>	Mossy Creek	Total Maximum Daily Load Development for Mossy Creek and Long Glade Run: Bacteria and General Standard (Benthic) Impairments	<u>Augusta</u>	<u>B19</u>	<u>E. coli</u>	1.74E+09	<u>cfu/year</u>
<u>143.</u>	Long Glade Creek	Total Maximum Daily Load Development for Mossy Creek and Long Glade Run: Bacteria and General Standard (Benthic) Impairments	<u>Augusta</u>	<u>B24</u>	<u>E. coli</u>	5.23E+09	<u>cfu/year</u>
144.	Muddy Creek	Fecal coliform TMDL for Muddy Creek	Rockingham	<u>B22</u>	Fecal coliform	3.04E+11	cfu/year
<u>145.</u>	Naked Creek	Fecal coliform TMDL for Naked Creek	Augusta	<u>B28</u>	Fecal coliform	5.54E+09	cfu/year
<u>146.</u>	Neabsco Creek	Bacteria TMDL for Neabsco Creek	Prince William	<u>A25</u>	E. coli	1.27E+12	cfu/day
<u>147.</u>	Barnes Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Potomac River: Nomini Creek	Westmoreland	<u>A32</u>	Fecal coliform	<u>N/A²</u>	MPN/day
148.	Buckner Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Potomac River: Nomini Creek	Westmoreland	<u>A32</u>	Fecal coliform	<u>N/A²</u>	MPN/day
149.	Cold Harbor Bay	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Potomac River: Nomini Creek	Westmoreland	<u>A32</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>150.</u>	Currioman Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Potomac River: Nomini Creek	Westmoreland	<u>A32</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>151.</u>	Nomini Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Potomac River: Nomini Creek	Westmoreland	<u>A32</u>	Fecal coliform	<u>N/A²</u>	MPN/day

<u>152.</u>	North Prong Buckner Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Potomac River: Nomini Creek	Westmoreland	<u>A32</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>153.</u>	Pierce Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Potomac River: Nomini Creek	Westmoreland	<u>A32</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>154.</u>	Mill Creek	Bacteria Total Maximum Daily Load Development for Mill Creek, Stony Creek, and the North Fork of the Shenandoah River	Shenandoah	<u>B48</u>	<u>E. coli</u>	8.80E+09	cfu/year
<u>155.</u>	Stony Creek	Bacteria Total Maximum Daily Load Development for Mill Creek, Stony Creek, and the North Fork of the Shenandoah River	Shenandoah	<u>B49</u>	<u>E. coli</u>	4.42E+12	cfu/year
<u>156.</u>	North Fork Shenandoah River	Bacteria Total Maximum Daily Load Development for Mill Creek, Stony Creek, and the North Fork of the Shenandoah River	Frederick, Rockingham, Shenandoah	B42, B43, B44, B45, B46, B47, B48, B49, B50, B51, B52, B53, B54	E. coli	1.02E+13	cfu/year
157.	North River	Bacteria Total Maximum Daily Load Development for North River	Augusta, Staunton, Rockingham, Harrisonburg	B10, B11, B12, B13, B14, B15, B16, B17, B18, B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, B29	E. coli	5.32E+13	cfu/year
<u>158.</u>	Broad Run (3) (VAN-A19R- 05)	Bacteria TMDLs for Popes Head Creek, Broad Run, Kettle Run, South Run, Little Bull Run, Bull Run and Occoquan River	Prince William, Fauquier	<u>A19</u>	<u>E. coli</u>	2.35E+10	cfu/year
<u>159.</u>	Little Bull Run	Bacteria TMDLs for Popes Head Creek, Broad Run, Kettle Run, South Run, Little Bull Run, Bull Run and Occoquan River	Prince William	<u>A21</u>	<u>E. coli</u>	3.29E+10	<u>cfu/year</u>

<u>160.</u>	Broad Run (2) (VAN-A19R- 02)	Bacteria TMDLs for Popes Head Creek, Broad Run, Kettle Run, South Run, Little Bull Run, Bull Run and Occoquan River	<u>Fauquier</u>	<u>A19</u>	<u>E. coli</u>	1.36E+11	<u>cfu/year</u>
<u>161.</u>	Occoquan River	Bacteria TMDLs for Popes Head Creek, Broad Run, Kettle Run, South Run, Little Bull Run, Bull Run and Occoquan River	Manassas, Fauquier, Prince William	A17, A18, A19, A20	<u>E. coli</u>	2.29E+11	<u>cfu/year</u>
<u>162.</u>	South Run	Bacteria TMDLs for Popes Head Creek, Broad Run, Kettle Run, South Run, Little Bull Run, Bull Run and Occoquan River	<u>Fauquier</u>	<u>A19</u>	<u>E. coli</u>	4.32E+11	<u>cfu/year</u>
<u>163.</u>	Broad Run (1) (VAN-A19R- 01)	Bacteria TMDLs for Popes Head Creek, Broad Run, Kettle Run, South Run, Little Bull Run, Bull Run and Occoquan River	<u>Fauquier</u>	<u>A19</u>	E. coli	5.84E+11	cfu/year
<u>164.</u>	Popes Head Creek	Bacteria TMDLs for Popes Head Creek, Broad Run, Kettle Run, South Run, Little Bull Run, Bull Run and Occoquan River	<u>Fairfax</u>	<u>A23</u>	E. coli	7.12E+11	cfu/year
<u>165.</u>	Kettle Run	Bacteria TMDLs for Popes Head Creek, Broad Run, Kettle Run, South Run, Little Bull Run, Bull Run and Occoquan River	Prince William	<u>A19</u>	<u>E. coli</u>	8.30E+12	cfu/year
<u>166.</u>	Bull Run	Bacteria TMDLs for Popes Head Creek, Broad Run, Kettle Run, South Run, Little Bull Run, Bull Run and Occoquan River	Manassas Park, Prince William, Fairfax, Loudoun	A21, A22, A23	<u>E. coli</u>	<u>1.11E+14</u>	<u>cfu/year</u>
<u>167.</u>	Abrams Creek	Bacteria TMDLs for Abrams Creek and Upper and Lower Opequon Creek	Frederick, Winchester	<u>B09</u>	<u>E. coli</u>	3.10E+12	<u>cfu/year</u>
<u>168.</u>	Upper Opequon Creek watershed	Bacteria TMDLs for Abrams Creek and Upper and Lower Opequon Creek	<u>Frederick</u>	<u>B08</u>	<u>E. coli</u>	1.13E+13	cfu/year
<u>169.</u>	Lower Opequon Creek watershed and tributaries	Bacteria TMDLs for Abrams Creek and Upper and Lower Opequon Creek	Frederick, Clarke, Winchester	<u>B08, B09</u>	E. coli	2.13E+13	cfu/year

<u>170.</u>	Piney Run	Bacteria TMDL for Piney Run	Loudoun	<u>A01</u>	E. coli	3.48E+09	cfu/year
<u>171.</u>	Pleasant Run	Fecal coliform TMDL for Pleasant Run	Rockingham	<u>B27</u>	Fecal coliform	<u>0</u>	cfu/year
<u>172.</u>	Popes Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Potomac River: Mattox Creek to Currioman Bay	Westmoreland	<u>A31</u>	Fecal coliform	N/A^2	MPN/day
<u>173.</u>	Potomac Run	Bacteria Total Maximum Daily Load Development for Tributaries to the Potomac River: Prince William and Stafford Counties	<u>Stafford</u>	<u>A29</u>	<u>E. coli</u>	<u>1.77E+11</u>	<u>cfu/year</u>
<u>174.</u>	Potomac River, unnamed tributary	Bacteria Total Maximum Daily Load Development for Tributaries to the Potomac River: Prince William and Stafford Counties	<u>Stafford</u>	<u>A26</u>	<u>E. coli</u>	3.92E+11	cfu/year
<u>175.</u>	Chopawamsic Creek, North Branch	Bacteria Total Maximum Daily Load Development for Tributaries to the Potomac River: Prince William and Stafford Counties	Prince William	<u>A26</u>	<u>E. coli</u>	4.01E+11	cfu/year
<u>176.</u>	Potomac Creek	Bacteria Total Maximum Daily Load Development for Tributaries to the Potomac River: Prince William and Stafford Counties	<u>Stafford</u>	<u>A29</u>	<u>E. coli</u>	7.35E+11	<u>cfu/year</u>
<u>177.</u>	Quantico Creek, South Fork	Bacteria Total Maximum Daily Load Development for Tributaries to the Potomac River: Prince William and Stafford Counties	Prince William	<u>A26</u>	<u>E. coli</u>	1.09E+12	<u>cfu/year</u>
<u>178.</u>	Accokeek Creek	Bacteria Total Maximum Daily Load Development for Tributaries to the Potomac River: Prince William and Stafford Counties	<u>Stafford</u>	<u>A29</u>	<u>E. coli</u>	3.18E+12	cfu/year
<u>179.</u>	Powells Creek	Bacteria Total Maximum Daily Load Development for Tributaries to the Potomac River: Prince William and Stafford Counties	Prince William	<u>A26</u>	<u>E. coli</u>	3.18E+12	<u>cfu/year</u>

<u>180.</u>	Quantico Creek	Bacteria Total Maximum Daily Load Development for Tributaries to the Potomac River: Prince William and Stafford Counties	Prince William	<u>A26</u>	E. coli	3.75E+12	cfu/year
<u>181.</u>	Austin Run	Bacteria Total Maximum Daily Load Development for Tributaries to the Potomac River: Prince William and Stafford Counties	<u>Stafford</u>	<u>A28</u>	E. coli	3.14E+13	cfu/year
<u>182.</u>	Rosier Creek	Bacteria TMDL for Rosier Creek Watershed	King George	<u>A31</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>183.</u>	Smith Creek	Total Maximum Daily Load Development for Smith Creek	Shenandoah, Rockingham	<u>B47</u>	E. coli	8.53E+11	cfu/year
<u>184.</u>	South Fork Shenandoah River	Bacteria TMDL Development and Benthic Stressor Analysis for South Fork Shenandoah River	Augusta, Staunton, Rockingham, Harrisonburg, Page, Warren, Waynesboro	B10, B11, B12, B13, B14, B15, B16, B17, B18, B19, B20, B21, B22, B23, B24, B25, B26, B27, B28, B29, B30, B31, B32, B33, B34, B35, B36, B37, B38, B39, B40, B41	<u>E. coli</u>	1.43E+14	<u>cfu/year</u>
<u>185.</u>	South River	Bacteria and Benthic Total Maximum Daily Load Development for South River	Augusta, Waynesboro	<u>B30, B31,</u> <u>B32</u>	E. coli	1.13E+14	<u>cfu/year</u>
<u>186.</u>	Page Brook	Total Maximum Daily Load Developments to Address Bacteria and Benthic Impairments in the Spout Run Watershed	<u>Clarke</u>	<u>B57</u>	E. coli	2.18E+11	cfu/year
<u>187.</u>	Roseville Run	Total Maximum Daily Load Developments to Address Bacteria and Benthic Impairments in the Spout Run Watershed	<u>Clarke</u>	<u>B57</u>	<u>E. coli</u>	3.05E+11	<u>cfu/year</u>
<u>188.</u>	Spout Run	Total Maximum Daily Load Developments to Address Bacteria and Benthic Impairments in the Spout Run Watershed	<u>Clarke</u>	<u>B57</u>	<u>E. coli</u>	5.22E+11	<u>cfu/year</u>
<u>189.</u>	Mine Run	Bacteria TMDL Development for Tributaries to the	<u>Fairfax</u>	<u>A11</u>	<u>E. coli</u>	1.22E+11	<u>cfu/year</u>

		Potomac River: Sugarland Run, Mine Run, and Pimmit Run					
<u>190.</u>	Pimmit Run	Bacteria TMDL Development for Tributaries to the Potomac River: Sugarland Run, Mine Run, and Pimmit Run	Arlington, Fairfax	<u>A12</u>	E. coli	1.17E+12	cfu/year
<u>191.</u>	Sugarland Run	Bacteria TMDL Development for Tributaries to the Potomac River: Sugarland Run, Mine Run, and Pimmit Run	<u>Fairfax</u>	<u>A10</u>	E. coli	4.78E+12	cfu/year
<u>192.</u>	<u>Tidal Four</u> <u>Mile Run</u>	Bacteria TMDL for the Tidal Four Mile Run	Arlington, Alexandria	<u>A12</u>	E. coli	1.42E+14	cfu/year
<u>193.</u>	Deep Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Upper Machodoc Creek	King George	<u>A30</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>194.</u>	Upper Machodoc Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Upper Machodoc Creek	King George	<u>A30</u>	Fecal coliform	N/A^2	MPN/day
<u>195.</u>	Williams Creek, Upper Machodoc Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Upper Machodoc Creek	King George	<u>A30</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>196.</u>	Dungan Cove	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Yeocomico River	Northumberland	<u>A33</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>197.</u>	Hampton Hall Branch	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Yeocomico River	Westmoreland	<u>A33</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>198.</u>	Lodge Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Yeocomico River	Northumberland	<u>A33</u>	Fecal coliform	<u>N/A²</u>	MPN/day

<u>199.</u>	Mill Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Yeocomico River	<u>Northumberland</u>	<u>A33</u>	Fecal coliform	N/A^2	MPN/day
<u>200.</u>	White Point Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Yeocomico River	Westmoreland	<u>A33</u>	Fecal coliform	N/A^2	MPN/day

B. Non-TMDL waste load wasteload allocations.

Water Body	Permit No.	Facility Name	Outfal l No.	Receiving Stream	River Mile	Parameter Description	WLA	Units WLA
VAV-B02R	VA0023281	Monterey STP	001	West Strait Creek	3.85	CBOD ₅	11.4	KG/D
VAV-B08R	VA0065552	Opequon Water Reclamation Facility	001	Opequon Creek	32.66	BOD ₅ , JUN-NOV	207	KG/D
		AKA Winchester - Frederick Regional				CBOD ₅ , DEC- MAY	1514	KG/D
VAV-B14R	VA0025291	Fishersville Regional STP	001	Christians Creek	12.36	BOD ₅	182	KG/D
		North River				CBOD ₅ , JAN- MAY	700	
VAV-B23R	VA0060640 7.23.04	WWTF AKA Harrisonburg -	001	North River	15.01	CBOD ₅ , JUN-DEC	800	KG/D
	7.23.04	Rockingham Reg. Sewer Auth.				TKN, JUN-DEC	420	
		Sewei Aun.				TKN, JAN-MAY	850	
VAV-B32R	VA0002160	INVISTA - Waynesboro Formerly Dupont - Waynesboro	001	South River	25.3	BOD ₅	272	KG/D
VAV-B32R	VA0025151	Wassashana CTD	001	South River	23.54	CBOD ₅	227	KG/D
VAV-D32K	VA0023131	Waynesboro STP	001	South River	23.34	CBOD ₅ , JUN-OCT	113.6	KG/D
VAV-B32R	VA0028037	Skyline Swannanoa STP	001	South River UT	2.96	BOD ₅	8.5	KG/D
VAV-B35R	VA0024732	Massanutten Public Service STP	001	Quail Run	5.07	BOD ₅	75.7	KG/D
	T. 1. 0.0.0.2.1.7.0		001	S.F.	00.05	BOD ₅	1570	KG/D
VAV-B37R	VA0002178	Merck & Company	001	Shenandoah River	88.09	AMMONIA, AS N	645.9	KG/D

Notes:

The total WLA can be increased prior to modification provided that DEQ tracks these changes for bacteria TMDLs where the permit is consistent with water quality standards for bacteria.

²There were no point source dischargers in the modeled TMDL area.

VAV-B49R	VA0028380	Stoney Creek Sanitary District STP	001	Stoney Creek	19.87	BOD ₅ , JUN-NOV	29.5	KG/D
VAV-B53R	VA0020982	Middletown STP	001	Meadow Brook	2.19	CBOD ₅	24.0	KG/D
VAV-B58R	VA0020532	Berryville STP	001	Shenandoah River	24.23	CBOD ₅	42.6	KG/D

C. Nitrogen and phosphorus <u>waste load</u> <u>wasteload</u> allocations to restore the Chesapeake Bay and its tidal rivers. The following table presents nitrogen and phosphorus <u>waste load</u> <u>wasteload</u> allocations for the identified significant dischargers and the total nitrogen and total phosphorus <u>waste load</u> <u>wasteload</u> allocations for the listed facilities.

Virginia Waterbody ID	Discharger Name	VPDES Permit No.	Total Nitrogen (TN) Waste Load <u>Wasteload</u> Allocation (lbs/yr)	Total Phosphorus (TP) Waste Load <u>Wasteload</u> Allocation (lbs/yr)
B37R	Coors Brewing Company	VA0073245	54,820	4,112
B14R	Fishersville Regional STP	VA0025291	48,729	3,655
B32R	INVISTA - Waynesboro (Outfall 101)	VA0002160	78,941	1,009
B39R	Luray STP	VA0062642	19,492	1,462
B35R	Massanutten PSA STP	VA0024732	18,273	1,371
B37R	Merck - Stonewall WWTP (Outfall 101) (9) ⁹	VA0002178	43,835	4,384
B12R	Middle River Regional STP	VA0064793	82,839	6,213
B23R	North River WWTF-(2) ²	VA0060640	253,391	19,004
B22R	VA Poultry Growers -Hinton	VA0002313	27,410	1,371
B38R	Pilgrims Pride - Alma	VA0001961	18,273	914
B31R	Stuarts Draft WWTP	VA0066877	48,729	3,655
B32R	Waynesboro STP	VA0025151	48,729	3,655
B23R	Weyers Cave STP	VA0022349	6,091	457
B58R	Berryville STP	VA0020532	8,528	640
B55R	Front Royal STP	VA0062812	48,729	3,655
B49R	Georges Chicken LLC	VA0077402	31,065	1,553
B48R	Mt. Jackson STP (3)³	VA0026441	8,528	640
B45R	New Market STP	VA0022853	6,091	457
B45R	North Fork (SIL) WWTF	VA0090263	23,390	1,754
B49R	Stoney Creek SD STP	VA0028380	7,309	548
B50R	North Fork Regional WWTP (1) ¹	VA0090328	9,137	685
B51R	Strasburg STP	VA0020311	11,939	895
B50R	Woodstock STP	VA0026468	24,364	1,827
A06R	Basham Simms WWTF -(4)⁴	VA0022802	18,273	1,371
A09R	Broad Run WRF (5) ⁵	VA0091383	134,005	3,350

A08R	Leesburg WPCF	MD0066184	121,822	9,137
A06R	Round Hill Town WWTF	VA0026212	9,137	685
A25R	DSC - Section 1 WWTF-(6)-6	VA0024724	42,029	2,522
A25R	DSC - Section 8 WWTF-(7) ⁷	VA0024678	42,029	2,522
A25E	H L Mooney WWTF	VA0025101	219,280	13,157
A22R	UOSA - Centreville	VA0024988	1,315,682	16,446
A19R	Vint Hill WWTF	VA0020460	11,573	868
B08R	Opequon WRF-(10) ¹⁰	VA0065552	121,851	11,512
B08R	Parkins Mills STP (8) ⁸	VA0075191	60,911	4,568
A13E	Alexandria SA WWTF	VA0025160	493,381	29,603
A12E	Arlington County Water PCF	VA0025143	365,467	21,928
A16R	Noman M Cole Jr PCF	VA0025364	612,158	36,729
A12R	Blue Plains (VA Share)	DC0021199	581,458	26,166
A26R	Quantico WWTF	VA0028363	20,101	1,206
A28R	Aquia WWTF	VA0060968	73,093	4,386
A31E	Colonial Beach STP	VA0026409	18,273	1,827
A30E	Dahlgren WWTF	VA0026514	9,137	914
A29E	Fairview Beach	MD0056464	1,827	183
A30E	US NSWC-Dahlgren WWTF	VA0021067	6,578	658
A31R	Purkins Corner STP	VA0070106	1,096	110
	TOTALS:		5,156,169	246,635

NOTE Notes:

(1)¹Shenandoah Co. - North Fork Regional WWTP <u>waste load</u>: <u>wasteload</u> allocations (WLAs) based on a design flow capacity of 0.75 million gallons per day (MGD). If plant is not certified to operate at 0.75 MGD design flow capacity by December 31, 2010, the WLAs will be deleted and facility removed from Significant Discharger List.

(2)²Harrisonburg-Rockingham Regional S.A.-North River STP: waste load wasteload allocations (WLAs) based on a design flow capacity of 20.8 million gallons per day (MGD). If plant is not certified to operate at 20.8 MGD design flow capacity by December 31, 2011, the WLAs will decrease to TN = 194,916 lbs/yr; TP = 14,619 lbs/yr, based on a design flow capacity of 16.0 MGD.

 $\frac{(3)^3}{(3)^3}$ Mount Jackson STP: waste load wasteload allocations (WLAs) based on a design flow capacity of 0.7 million gallons per day (MGD). If plant is not certified to operate at 0.7 MGD design flow capacity by December 31, 2010, the WLAs will decrease to TN = 7,309 lbs/yr; TP = 548 lbs/yr, based on a design flow capacity of 0.6 MGD.

(4)⁴Purcellville-Basham Simms STP: <u>waste load</u> <u>wasteload</u> allocations (WLAs) based on a design flow capacity of 1.5 million gallons per day (MGD). If plant is not certified to operate at 1.5 MGD design flow capacity by December 31, 2010, the WLAs will decrease to TN = 12,182 lbs/yr; TP = 914lbs/yr, based on a design flow capacity of 1.0 MGD.

 $(5)^5$ Loudoun Co. S.A.-Broad Run WRF: <u>waste load</u> <u>wasteload</u> allocations (WLAs) based on a design flow capacity of 11.0 million gallons per day (MGD). If plant is not certified to operate at 11.0 MGD design flow capacity by December 31, 2010, the WLAs will decrease to TN = 121,822 lbs/yr; TP = 3,046 lbs/yr, based on a design flow capacity of 10.0 MGD.

 $(6)^{6}$ Dale Service Corp.-Section 1 WWTF: waste load wasteload allocations (WLAs) based on a design flow capacity of 4.6 million gallons per day (MGD). If plant is not certified to operate at 4.6 MGD design flow capacity by December 31, 2010, the WLAs will decrease to TN = 36,547 lbs/yr; TP = 2,193 lbs/yr, based on a design flow capacity of 4.0 MGD.

 $\frac{(7)^2}{2}$ Dale Service Corp.-Section 8 WWTF: waste load wasteload allocations (WLAs) based on a design flow capacity of 4.6 million gallons per day (MGD). If plant is not certified to operate at 4.6 MGD design flow capacity by December 31, 2010, the WLAs will decrease to TN = 36,547 lbs/yr; TP = 2,193 lbs/yr, based on a design flow capacity of 4.0 MGD.

 $\frac{(8)^8}{}$ Parkins Mill STP: waste load wasteload allocations (WLAs) based on a design flow capacity of 5.0 million gallons per day (MGD). If plant is not certified to operate at 5.0 MGD design flow capacity by December 31, 2010, the WLAs will decrease to TN = 36,547 lbs/yr;

TP = 2,741 lbs/yr, based on a design flow capacity of 3.0 MGD.

(9) Merck-Stonewall – (a) these waste load wasteload allocations will be subject to further consideration, consistent with the Chesapeake Bay TMDL, as it may be amended, and possible reduction upon "full-scale" results showing the optimal treatment capability of the 4-stage Bardenpho technology at this facility consistent with the level of effort by other dischargers in the region. The "full scale" evaluation will be completed by December 31, 2011, and the results submitted to DEQ for review and subsequent board action; (b) in any year when credits are available after all other exchanges within the Shenandoah-Potomac River Basin are completed in accordance with § 62.1-44.19:18 of the Code of Virginia, Merck shall acquire credits for total nitrogen discharged in excess of 14,619 lbs/yr and total phosphorus discharged in excess of 1,096 lbs/yr; and (c) the allocations are not transferable and compliance credits are only generated if discharged loads are less than the loads identified in clause (b).

(10)¹⁰Opequon WRF: (a) the TN WLA is derived based on 3 mg/l of TN and 12.6 MGD; (b) the TN WLA includes an additional allocation for TN in the amount of 6,729 lbs/yr by means of a landfill leachate consolidation and treatment project; and (c) the TP WLA is derived based on 0.3 mg/l of TP and 12.6 MGD.

9VAC25-720-60. James River Basin.

A. Total maximum daily load loads (TMDLs).

TMDL #	Stream Name	TMDL Title	City/County	WBID	Pollutant	WLA ¹	Units
1.	Pheasanty Run	Benthic TMDL Reports for Six Impaired Stream Segments in the Potomac- Shenandoah and James River Basins	Bath	I14R	Organic Solids <u>solids</u>	1,231.00	LB/YR
2.	Wallace Mill Stream	Benthic TMDL Reports for Six Impaired Stream Segments in the Potomac- Shenandoah and James River Basins	Augusta	I32R	Organic Solids <u>solids</u>	2,814.00	LB/YR
3.	Montebello Sp. Branch	Benthic TMDL Reports for Six Impaired Stream Segments in the Potomac- Shenandoah and James River Basins	Nelson	H09R	Organic Solids <u>solids</u>	37.00	LB/YR
4.	Unnamed Tributary tributary to Deep Creek	General Standard Total Maximum Daily Load for Unnamed Tributary to Deep Creek	Nottoway	J11R	Raw Sewage <u>sewage</u>	0	GAL/YR
5.	Unnamed Tributary tributary to Chickahominy River	Total Maximum Daily Load (TMDL) Development for the Unnamed Tributary to the Chickahominy River	Hanover	G05R	Total Phosphorus phosphorus	409.35	LB/YR

6.	Rivanna River	Benthic TMDL Development for the Rivanna River Watershed	Albemarle, Greene, Nelson, Orange	H27R, H28R	Sediment	10,229	Lbs/Day
7.	Jackson River	Benthic TMDL Development for the Jackson River, Virginia	Alleghany, Bath, Highland	I04R, I09R	Total Phosphorus phosphorus	72,955	LB/GS ^{‡2}
8.	Jackson River	Benthic TMDL Development for the Jackson River, Virginia	Alleghany, Bath, Highland	I04R, I09R	Total Nitrogen nitrogen	220,134	LB/GS
9.	Little Calfpasture	Total Maximum Daily Load Development to Address a Benthic Impairment in the Little Calfpasture River, Rockbridge County, Virginia	Rockbridge	132R	Sediment	30.4	T/YR
10.	Phelps Branch	Phelps Branch Sediment TMDL Development Report for a Benthic Impairment in Appomattox County, Virginia	Appomattox	H06R	Sediment	115.7	T/YR
11.	Long Branch	Sediment TMDL Development Report for Benthic Impairments in Long Branch and Buffalo River in Amherst County, Virginia	Amherst	H11R	Sediment	16.2	T/YR
12.	Buffalo River	Sediment TMDL Development Report for Benthic Impairments in Long Branch and Buffalo River in Amherst County, Virginia	Amherst	H11R	Sediment	306.4	T/YR
13.	Chickahominy River	Benthic TMDL Development for Chickahominy River, Virginia	Hanover, Henrico	G05R	Sediment	294.03	T/YR

14.	Colliers Creek	Bacteria TMDL Development for Colliers Creek, North Fork Buffalo Creek, South Fork Buffalo Creek, Buffalo Creek, Maury River, and Cedar Creek and a Sediment TMDL Development for Colliers Creek	Rockbridge	138R	Sediment	103.4	T/YR
<u>15.</u>	Angola Creek (1) - VAC- J06R ANG01A00	Total Maximum Daily Load Development for the Appomattox River Basin	<u>Cumberland</u>	<u>J06</u>	<u>E. coli</u>	<u>0</u>	<u>cfu/year</u>
<u>16.</u>	Angola Creek (2) - VAC- J06R ANG02A00	Total Maximum Daily Load Development for the Appomattox River Basin	Cumberland	<u>J06</u>	<u>E. coli</u>	<u>0</u>	<u>cfu/year</u>
<u>17.</u>	Horsepen Creek	Total Maximum Daily Load Development for the Appomattox River Basin	Cumberland	<u>J06</u>	<u>E. coli</u>	<u>0</u>	cfu/year
18.	Little Sandy Creek	Total Maximum Daily Load Development for the Appomattox River Basin	Prince Edward	<u>J03</u>	<u>E. coli</u>	<u>0</u>	cfu/year
<u>19.</u>	Saylers Creek	Total Maximum Daily Load Development for the Appomattox River Basin	Prince Edward	<u>J06</u>	E. coli	<u>0</u>	cfu/year
<u>20.</u>	Spring Creek	Total Maximum Daily Load Development for the Appomattox River Basin	Prince Edward	<u>J02</u>	<u>E. coli</u>	<u>0</u>	cfu/year
21.	West Creek	Total Maximum Daily Load Development for the Appomattox River Basin	<u>Amelia</u>	<u>J11</u>	<u>E. coli</u>	<u>0</u>	cfu/year
<u>22.</u>	Briery Creek	Total Maximum Daily Load Development for the Appomattox River Basin	Prince Edward	<u>J05</u>	<u>E. coli</u>	3.50E+09	cfu/year

23.	Bush River (1) - VAC- J04R BSR02A02	Total Maximum Daily Load Development for the Appomattox River Basin	Prince Edward	<u>J04,</u> <u>J05</u>	<u>E. coli</u>	3.50E+09	cfu/year
24.	Bush River (2) - VAC- J03R BSR03A02	Total Maximum Daily Load Development for the Appomattox River Basin	Prince Edward	J03, J04, J05	<u>E. coli</u>	3.50E+09	cfu/year
<u>25.</u>	Swift Creek (1) - VAP- J16R_SFT01A00	Total Maximum Daily Load Development for the Appomattox River Basin	Chesterfield	<u>J16</u>	<u>E. coli</u>	8.37E+09	<u>cfu/year</u>
<u>26.</u>	Swift Creek (2) - VAP- J17R_SFT01B98	Total Maximum Daily Load Development for the Appomattox River Basin	<u>Chesterfield</u>	<u>J16,</u> <u>J17</u>	<u>E. coli</u>	3.24E+11	<u>cfu/year</u>
<u>27.</u>	Swift Creek (3) - VAP- J17R SFT01C98	Total Maximum Daily Load Development for the Appomattox River Basin	Chesterfield	<u>J16,</u> <u>J17</u>	<u>E. coli</u>	4.76E+11	<u>cfu/year</u>
28.	Flat Creek	Total Maximum Daily Load Development for the Appomattox River Basin	Nottoway, Amelia	<u>J08,</u>	<u>E. coli</u>	5.24E+11	<u>cfu/year</u>
<u>29.</u>	Nibbs Creek	Total Maximum Daily Load Development for the Appomattox River Basin	<u>Amelia</u>	<u>J09</u>	<u>E. coli</u>	5.24E+11	cfu/year
<u>30.</u>	Deep Creek	Total Maximum Daily Load Development for the Appomattox River Basin	Nottoway	<u>J11</u>	<u>E. coli</u>	8.71E+11	cfu/year
31.	Appomattox River (1) - VAC- J01R_APP03A02, VAC- J01R_APP04A02, VAC- J01R_APP05A04, VAC- J06R_APP05A02, VAP- J07R_APP01A98, VAP- J10R_APP01A98	Total Maximum Daily Load Development for the Appomattox River Basin	Cumberland, Powhatan, Amelia, Prince Edward, Appomattox	J01, J02, J03, J04, J05, J06, J07	<u>E. coli</u>	1.07E+13	<u>cfu/year</u>

32.	Appomattox River (2), lower - VAP- J15R APP01A98	Total Maximum Daily Load Development for the Appomattox River Basin	Chesterfield, Cumberland, Powhatan, Nottoway, Amelia, Dinwiddie, Prince Edward, Appomattox	J01, J02, J03, J04, J05, J06, J07, J08, J09, J10, J11, J12, J13, J14, J15	<u>E. coli</u>	1.66E+13	<u>cfu/year</u>
33.	Appomattox River and tributaries. lower tidal (3) - VAP- J15E APP01A98, VAP- J15E APP02A98, VAP- J15E APP02B12	Total Maximum Daily Load Development for the Appomattox River Basin	Chesterfield, Cumberland, Nottoway, Petersburg, Amelia, Colonial Heights, Prince Edward, Appomattox	J01, J02, J03, J04, J05, J06, J07, J08, J09, J10, J11, J12, J13, J14, J15, J16, J17	<u>E. coli</u>	7.47E+13	cfu/year
<u>34.</u>	Bear Garden Creek	Bacteria Total Maximum Daily Load (TMDL) Development for the Bear Garden Creek Watershed	Buckingham	<u>H20</u>	<u>E. coli</u>	3.15E+08	cfu/day
<u>35.</u>	Stonewall Creek	Bacteria Total Maximum Daily Load Development for Bent Creek, North Creek, Stonewall Creek, Walkers Ford Creek, and Wreck Island Creek	Appomattox	<u>H05</u>	<u>E. coli</u>	9.28E+10	<u>cfu/year</u>
<u>36.</u>	Bent Creek	Bacteria Total Maximum Daily Load Development for Bent Creek, North Creek, Stonewall Creek, Walkers Ford Creek, and	Appomattox	<u>H07</u>	E. coli	2.26E+11	cfu/year

		Wreck Island Creek					
<u>37.</u>	North Creek	Bacteria Total Maximum Daily Load Development for Bent Creek, North Creek, Stonewall Creek, Walkers Ford Creek, and Wreck Island Creek	Appomattox	<u>H06</u>	<u>E. coli</u>	2.96E+11	<u>cfu/year</u>
38.	Wreck Island Creek	Bacteria Total Maximum Daily Load Development for Bent Creek, North Creek, Stonewall Creek, Walkers Ford Creek, and Wreck Island Creek	Appomattox	<u>H06</u>	<u>E. coli</u>	8.76E+11	<u>cfu/year</u>
39.	Walkers Ford Creek	Bacteria Total Maximum Daily Load Development for Bent Creek, North Creek, Stonewall Creek, Walkers Ford Creek, and Wreck Island Creek	Amherst	<u>H05</u>	<u>E. coli</u>	8.90E+11	<u>cfu/year</u>
40.	Bleakhorn Creek	TMDL Report for Chesapeake Bay Shellfish Waters: Bleakhorn Creek, Bennett Creek, and Knotts Creek Bacterial Impairments	Suffolk	<u>G13</u>	<u>Fecal</u> <u>coliform</u>	2.66E+09	MPN/day
41.	Knotts Creek	TMDL Report for Chesapeake Bay Shellfish Waters: Bleakhorn Creek, Bennett Creek, and Knotts Creek Bacterial Impairments	Suffolk	<u>G13</u>	Fecal coliform	1.07E+10	MPN/day

42.	Bennett Creek	TMDL Report for Chesapeake Bay Shellfish Waters: Bleakhorn Creek, Bennett Creek, and Knotts Creek Bacterial Impairments	<u>Suffolk</u>	<u>G13</u>	<u>Fecal</u> <u>coliform</u>	6.37E+10	MPN/day
43.	Chickahominy River and tributaries	E. coli TMDL Development for Chickahomiy River and Tributaries	New Kent, Henrico, Charles City, Hanover	G05, G06, G07	<u>E. coli</u>	2.41E+12	cfu/year
44.	Chuckatuck Creek and Brewers Creek	Shellfish Bacteria Total Maximum Daily Load (TMDL) Development Chuckatuck Creek and Brewers Creek Watershed	Isle of Wight	<u>G11</u>	<u>Fecal</u> <u>coliform</u>	4.79E+11	MPN/day
<u>45.</u>	Paradise Creek	Bacteria Total Maximum Daily Load (TMDL) Development for the Elizabeth River Watershed	Portsmouth	<u>G15</u>	<u>Enterococci</u>	5.04E+11	cfu/day
<u>46.</u>	Lafayette River, upper	Bacteria Total Maximum Daily Load (TMDL) Development for the Elizabeth River Watershed	<u>Norfolk</u>	<u>G15</u>	<u>Enterococci</u>	1.05E+13	<u>cfu/day</u>
<u>47.</u>	Lower and Upper Western Branch, Elizabeth River	Bacteria Total Maximum Daily Load (TMDL) Development for the Elizabeth River Watershed	Chesapeake, Portsmouth	<u>G15</u>	Enterococci	2.00E+13	cfu/day
48.	Upper Mainstem, Lower Southern Branch, Lower Eastern Branch Elizabeth River, Broad Creek, Indian River	Bacteria Total Maximum Daily Load (TMDL) Development for the Elizabeth River Watershed	Chesapeake, Portsmouth, Norfolk	<u>G15,</u> <u>K39</u>	Enterococci	5.78E+13	cfu/day
<u>49.</u>	Fourmile Creek	Bacteria TMDL for Fourmile Creek	<u>Henrico</u>	<u>G02</u>	<u>E. coli</u>	3.99E+10	cfu/year

<u>50.</u>	<u>Hardware River.</u> <u>North Fork</u>	Bacteria Total Maximum Daily Load Development for North Fork Hardware River and Hardware River	<u>Albemarle</u>	<u>H18</u>	<u>E. coli</u>	3.50E+12	<u>cfu/year</u>
51.	Hardware River	Bacteria Total Maximum Daily Load Development for North Fork Hardware River and Hardware River	Fluvanna, Albemarle	H18, H19	<u>E. coli</u>	4.00E+12	<u>cfu/year</u>
<u>52.</u>	Walker Creek	Bacteria Total Maximum Daily Load Development for Hays Creek, Moffatts Creek, Walker Creek, and Otts Creek	Rockbridge	<u>134</u>	<u>E. coli</u>	6.00E+10	<u>cfu/year</u>
53.	Otts Creek	Bacteria Total Maximum Daily Load Development for Hays Creek, Moffatts Creek, Walker Creek, and Otts Creek	<u>Augusta</u>	<u>134</u>	<u>E. coli</u>	9.00E+10	<u>cfu/year</u>
<u>54.</u>	Hays Creek	Bacteria Total Maximum Daily Load Development for Hays Creek, Moffatts Creek, Walker Creek, and Otts Creek	Rockbridge	<u>I34</u>	<u>E. coli</u>	2.00E+11	<u>cfu/year</u>
<u>55.</u>	Hoffler Creek	Bacteria Total Maximum Daily Load (TMDL) Development for the Hoffler Creek Watershed	Portsmouth	<u>G15</u>	<u>Enterococci</u>	5.39E+11	<u>cfu/day</u>
<u>56.</u>	Powell Creek	Bacteria Total Maximum Daily Load Development for the James River - Hopewell to Westover	Prince George	<u>G03</u>	<u>E. coli</u>	6.12E+10	<u>cfu/year</u>
<u>57.</u>	Bailey Creek	Bacteria Total Maximum Daily Load	Prince George	<u>G03</u>	E. coli	1.62E+11	<u>cfu/year</u>

	1	D 1 :0	Γ			<u> </u>	
		Development for the James River - Hopewell to Westover					
<u>58.</u>	Bailey Bay, Bailey Creek, Cattail Creek	Bacteria Total Maximum Daily Load Development for the James River - Hopewell to Westover	Prince George, Hopewell	<u>G03</u>	<u>E. coli</u>	8.47E+12	<u>cfu/year</u>
<u>59.</u>	James River	Bacteria Total Maximum Daily Load Development for the James River - Hopewell to Westover	Prince George, Charles City, Hopewell	<u>G03</u>	E. coli	8.67E+14	cfu/year
<u>60.</u>	Austin Creek	Total Maximum Daily Load Development for the James River Basin	Buckingham	<u>H21</u>	<u>E. coli</u>	1.62E+10	cfu/year
61.	Fisby Branch	Total Maximum Daily Load Development for the James River Basin	<u>Buckingham</u>	<u>H21</u>	<u>E. coli</u>	2.15E+10	cfu/year
<u>62.</u>	Rock Island Creek	Total Maximum Daily Load Development for the James River Basin	<u>Buckingham</u>	<u>H17</u>	<u>E. coli</u>	3.38E+10	cfu/year
<u>63.</u>	Slate River, upper	Total Maximum Daily Load Development for the James River Basin	Buckingham	<u>H21</u>	<u>E. coli</u>	4.22E+10	cfu/year
64.	Troublesome Creek	Total Maximum Daily Load Development for the James River Basin	Buckingham	<u>H21</u>	E. coli	5.23E+10	cfu/year
<u>65.</u>	North River	Total Maximum Daily Load Development for the James River Basin	Buckingham	<u>H21</u>	E. coli	5.52E+10	cfu/year
<u>66.</u>	Ballinger Creek	Total Maximum Daily Load Development for the James River Basin	Albemarle	<u>H17</u>	<u>E. coli</u>	5.75E+10	cfu/year

<u>67.</u>	Totier Creek	Total Maximum Daily Load Development for the James River Basin	Albemarle	<u>H17</u>	<u>E. coli</u>	1.62E+11	<u>cfu/year</u>
<u>68.</u>	Slate River, lower	Total Maximum Daily Load Development for the James River Basin	Buckingham	<u>H21,</u> <u>H22</u>	<u>E. coli</u>	3.19E+12	cfu/year
<u>69.</u>	Fine Creek	Total Maximum Daily Load Development for the James River and Tributaries - Lower Piedmont Region	<u>Powhatan</u>	<u>H38</u>	<u>E. coli</u>	3.66E+10	<u>cfu/year</u>
<u>70.</u>	Big Lickinghole Creek, Little Lickinghole Creek	Total Maximum Daily Load Development for the James River and Tributaries - Lower Piedmont Region	Goochland	<u>H37</u>	<u>E. coli</u>	7.94E+10	<u>cfu/year</u>
<u>71.</u>	Byrd Creek	Total Maximum Daily Load Development for the James River and Tributaries - Lower Piedmont Region	Goochland, Fluvanna	<u>H34</u>	<u>E. coli</u>	1.08E+11	<u>cfu/year</u>
72.	<u>Upper James River</u>	Total Maximum Daily Load Development for the James River and Tributaries - Lower Piedmont Region	Cumberland, Fluvanna, Powhatan, Goochland	H33, H34, H37	<u>E. coli</u>	3.50E+11	<u>cfu/year</u>
73.	Beaverdam Creek	Total Maximum Daily Load Development for the James River and Tributaries - Lower Piedmont Region	Goochland	<u>H38</u>	<u>E. coli</u>	1.60E+12	<u>cfu/year</u>
74.	Lower James River	Total Maximum Daily Load Development for the James River and Tributaries - Lower Piedmont Region	Cumberland, Fluvanna, Powhatan, Goochland	H33, H34, H37, H38	<u>E. coli</u>	8.20E+12	<u>cfu/year</u>

<u>75.</u>	No Name Creek	Bacterial Total	Chesterfield	<u>G01</u>	E. coli	4.66E+11	cfu/year
		Maximum Daily Load Development for the James River and Tributaries - City of Richmond					
<u>76.</u>	Bernards Creek	Bacterial Total Maximum Daily Load Development for the James River and Tributaries - City of Richmond	<u>Powhatan</u>	<u>H39</u>	<u>E. coli</u>	1.67E+12	<u>cfu/year</u>
77.	Goode Creek	Bacterial Total Maximum Daily Load Development for the James River and Tributaries - City of Richmond	Richmond City	<u>G01</u>	<u>E. coli</u>	2.52E+12	<u>cfu/year</u>
78.	Gillies Creek	Bacterial Total Maximum Daily Load Development for the James River and Tributaries - City of Richmond	Henrico. Richmond City	<u>G01</u>	<u>E. coli</u>	2.93E+12	<u>cfu/year</u>
<u>79.</u>	Powhite Creek	Bacterial Total Maximum Daily Load Development for the James River and Tributaries - City of Richmond	Chesterfield	<u>H39</u>	<u>E. coli</u>	3.34E+12	<u>cfu/year</u>
80.	Almond Creek	Bacterial Total Maximum Daily Load Development for the James River and Tributaries - City of Richmond	Henrico	<u>G01</u>	<u>E. coli</u>	4.39E+12	cfu/year
81.	Falling Creek	Bacterial Total Maximum Daily Load Development for the James River and Tributaries - City of Richmond	Chesterfield, Richmond City	<u>G01</u>	<u>E. coli</u>	1.64E+13	cfu/year

82.	Reedy Creek	Bacterial Total Maximum Daily Load Development for the James River and Tributaries - City of Richmond	Richmond City H39 E. coli		8.23E+13	cfu/year	
83.	Tidal James River	Bacterial Total Maximum Daily Load Development for the James River and Tributaries - City of Richmond	Henrico, Richmond City, Goochland, Powhatan, Chesterfield	G01, G02, H39	E. coli	3.76E+14	cfu/year
84.	Lower James River	Bacterial Total Maximum Daily Load Development for the James River and Tributaries - City of Richmond	Henrico, Richmond City, Goochland, Powhatan, Chesterfield	<u>H39</u>	<u>E. coli</u>	3.06E+15	<u>cfu/year</u>
<u>85.</u>	Ivy Creek	Bacteria Total Maximum Daily Load Development for the James River Basin	<u>Lynchburg,</u> <u>Bedford</u>	<u>H03</u>	<u>E. coli</u>	6.25E+11	<u>cfu/year</u>
<u>86.</u>	Burton Creek	Bacteria Total Maximum Daily Load Development for the James River Basin	<u>Lynchburg</u>	<u>H03</u>	<u>E. coli</u>	7.37E+11	<u>cfu/year</u>
<u>87.</u>	Judith Creek	Bacteria Total Maximum Daily Load Development for the James River Basin	Lynchburg. Bedford	<u>H03</u>	<u>E. coli</u>	8.31E+11	cfu/year
<u>88.</u>	Tomahawk Creek	Bacteria Total Maximum Daily Load Development for the James River Basin	<u>Lynchburg</u>	<u>H03</u>	<u>E. coli</u>	8.34E+11	<u>cfu/year</u>
<u>89.</u>	Fishing Creek	Bacteria Total Maximum Daily Load Development for the James River Basin	<u>Lynchburg</u>	<u>H03</u>	<u>E. coli</u>	1.03E+12	<u>cfu/year</u>

<u>90.</u>	Blackwater Creek	Bacteria Total Maximum Daily Load Development for the James River	Lynchburg	<u>H03</u>	<u>E. coli</u>	3.06E+12	cfu/year
91.	James River	Basin Bacteria Total Maximum Daily Load Development for the James River Basin	Amherst, Bedford, Lynchburg	H01, H02, H03, H04, H05	E. coli	2.75E+14	cfu/year
92.	Baptist Run	Fecal Bacteria Total Maximum Daily Load Development for Warwick River	York	<u>G11</u>	<u>E. coli</u>	3.89E+09	<u>cfu/year</u>
93.	Deep Creek	Fecal Bacteria Total Maximum Daily Load Development for Warwick River	Newport News	G11, C07	Enterococci	5.59E+12	cfu/year
94.	Skiffes Creek	Fecal Bacteria Total Maximum Daily Load Development for Warwick River	James City	<u>G11</u>	Fecal coliform	2.46E+12	cfu/year
<u>95.</u>	James River, Warwick River	Fecal Bacteria Total Maximum Daily Load Development for Warwick River	Newport News, York	<u>G11</u>	Fecal coliform	3.04E+12	<u>cfu/year</u>
<u>96.</u>	Kings Creek and Bay	Shellfish Bacteria Total Maximum Daily Load (TMDL) Development Kings Creek and Bay and Ballard Creek and Bay Watersheds	Isle of Wight	G11	Fecal coliform	1.23E+09	<u>counts/da</u> У
97.	Ballard Creek and Bay	Shellfish Bacteria Total Maximum Daily Load (TMDL) Development Kings Creek and Bay and Ballard Creek and Bay Watersheds	Isle of Wight	<u>G11</u>	Fecal coliform	1.64E+09	counts/da y
98.	<u>Lawnes Creek</u>	TMDL Report for Chesapeake Bay Shellfish Waters: Lawnes Creek Bacterial	Surry	<u>G11</u>	<u>Fecal</u> <u>coliform</u>	5.94E+08	MPN/day

		<u>Impairment</u>					
<u>99.</u>	Looney Creek	Bacteria TMDL for Looney Creek	Botetourt	<u>I26</u>	<u>E. coli</u>	1.84E+10	cfu/year
100.	Buffalo Creek, South Fork	Bacteria Total Maximum Daily Load Development for Colliers Creek, North Fork Buffalo Creek, South Fork Buffalo Creek, Maury River and Cedar Creek and a Sediment Total Maximum Daily Load Development for Colliers Creek	Botetourt, Rockbridge	<u>138</u>	<u>E. coli</u>	2.01E+11	<u>cfu/year</u>
101.	Colliers Creek	Bacteria Total Maximum Daily Load Development for Colliers Creek, North Fork Buffalo Creek, South Fork Buffalo Creek, Maury River and Cedar Creek and a Sediment Total Maximum Daily Load Development for Colliers Creek	Rockbridge	<u>138</u>	<u>E. coli</u>	4.75E+11	<u>cfu/year</u>
102.	<u>Cedar Creek</u>	Bacteria Total Maximum Daily Load Development for Colliers Creek, North Fork Buffalo Creek, South Fork Buffalo Creek, Maury River and Cedar Creek and a Sediment Total Maximum Daily Load Development for Colliers Creek	Rockbridge	<u>I28</u>	<u>E. coli</u>	5.01E+11	cfu/year

103.	Buffalo Creek, North Fork	Bacteria Total Maximum Daily Load Development for Colliers Creek, North Fork Buffalo Creek, South Fork Buffalo Creek, Maury River and Cedar Creek and a Sediment Total Maximum Daily Load Development for Colliers Creek	Rockbridge	<u>I38</u>	E. coli	6.52E+11	cfu/year
104.	Buffalo Creek	Bacteria Total Maximum Daily Load Development for Colliers Creek, North Fork Buffalo Creek, South Fork Buffalo Creek, Buffalo Creek, Maury River and Cedar Creek and a Sediment Total Maximum Daily Load Development for Colliers Creek	Rockbridge	<u>138</u>	<u>E. coli</u>	1.91E+12	cfu/year
105.	Maury River	Bacteria Total Maximum Daily Load Development for Colliers Creek, North Fork Buffalo Creek, South Fork Buffalo Creek, Buffalo Creek, Maury River and Cedar Creek and a Sediment Total Maximum Daily Load Development for Colliers Creek	Buena Vista, Rockbridge	<u>137.</u> <u>138</u>	<u>E. coli</u>	2.98E+13	cfu/year
<u>106.</u>	Powhatan Creek	Bacteria Total Maximum Daily Load Development for Mill Creek and Powhatan Creek	James City	<u>G10</u>	<u>E. coli</u>	1.78E+13	<u>cfu/year</u>

<u>107.</u>	Mill Creek	Bacteria Total Maximum Daily Load Development for Mill Creek and Powhatan Creek	James City	<u>G10</u>	Enterococci	3.63E+12	cfu/year
108.	Powhatan Creek	Bacteria Total Maximum Daily Load Development for Mill Creek and Powhatan Creek	James City	<u>G10</u>	<u>Enterococci</u>	7.24E+12	<u>cfu/year</u>
109.	Moores Creek	Development of the Total Maximum Daily Load (TMDL) for Fecal Coliform Bacteria in Moore's Creek, Albemarle County, Virginia	Charlottesville, Albemarle	<u>H28</u>	Fecal coliform	3.30E+13	cfu/year
110.	Morris Creek	Morris Creek (tidal), Charles City County Total Maximum Daily Load for Bacteria Contamination Impaired for Recreational Use	Charles City	<u>G08</u>	Enterococci	2.92E+10	<u>cfu/day</u>
111.	Shingle Creek	Fecal Bacteria Total Maximum Daily Load for the Nansemond River	Suffolk	<u>G13,</u> <u>K39</u>	<u>Fecal</u> coliform	2.78E+09	cfu/year
112.	Nansemond River, upper and middle	Fecal Bacteria Total Maximum Daily Load for the Nansemond River	Isle of Wight, Suffolk	G12, G13, G14	<u>Fecal</u> coliform	3.89E+10	cfu/year
113.	Shingle Creek	Fecal Bacteria Total Maximum Daily Load for the Nansemond River	Suffolk	G13, K39	Enterococci	2.19E+10	cfu/year
114.	Nansemond River, upper	Fecal Bacteria Total Maximum Daily Load for the Nansemond River	Isle of Wight, Suffolk	G12, G13, G14	Enterococci	9.99E+10	cfu/year
115.	Nansemond River (Lake Meade)	Fecal Bacteria Total Maximum Daily Load for the Nansemond	Suffolk	G12, G13	Enterococci	9.99E+10	cfu/year

		River					
<u>116.</u>	Pagan River, middle and upper	Fecal Bacteria Total Maximum Daily Load Development for Pagan River	Isle of Wight	<u>G11</u>	<u>Enterococci</u>	3.01E+12	cfu/year
117.	Pagan River and Jones Creek	Fecal Bacteria Total Maximum Daily Load Development for Pagan River	Isle of Wight	<u>G11</u>	<u>Fecal</u> coliform	2.15E+12	<u>cfu/year</u>
<u>118.</u>	Lower Reed Creek	Bacteria TMDL for Reed Creek	<u>Bedford</u>	<u>H01</u>	<u>E. coli</u>	<u>0</u>	cfu/year
119.	Beaver Creek	Bacteria TMDL Development for the Rivanna River Mainstem, North Fork Rivanna River, Preddy Creek and Tributaries, Meadow Creek, Mechums River, and Beaver Creek Watersheds	Albemarle	<u>H23</u>	<u>E. coli</u>	3.29E+10	<u>cfu/year</u>
120.	Mechums River	Bacteria TMDL Development for the Rivanna River Mainstem, North Fork Rivanna River, Preddy Creek and Tributaries, Meadow Creek, Mechums River, and Beaver Creek Watersheds	<u>Albemarle</u>	<u>H23</u>	<u>E. coli</u>	3.31E+10	<u>cfu/year</u>
121.	Preddy Creek	Bacteria TMDL Development for the Rivanna River Mainstem, North Fork Rivanna River, Preddy Creek and Tributaries, Meadow Creek, Mechums River, and Beaver Creek Watersheds	Greene, Albermarle	<u>H27</u>	<u>E. coli</u>	2.43E+11	<u>cfu/year</u>
<u>122.</u>	<u>Rivanna River.</u> <u>North Fork</u>	Bacteria TMDL Development for the Rivanna River Mainstem,	<u>Greene,</u> <u>Albermarle</u>	<u>H27</u>	<u>E. coli</u>	2.15E+12	cfu/year

		North Fork Rivanna River, Preddy Creek and Tributaries, Meadow Creek, Mechums River, and Beaver Creek Watersheds					
<u>123.</u>	Meadow Creek	Bacteria TMDL Development for the Rivanna River Mainstem, North Fork Rivanna River, Preddy Creek and Tributaries, Meadow Creek, Mechums River, and Beaver Creek Watersheds	<u>Charlottesville</u>	<u>H28</u>	<u>E. coli</u>	3.89E+12	<u>cfu/year</u>
<u>124.</u>	Rivanna River	Bacteria TMDL Development for the Rivanna River Mainstem, North Fork Rivanna River, Preddy Creek and Tributaries, Meadow Creek, Mechums River, and Beaver Creek Watersheds	Charlottesville, Albemarle, Greene	H23, H24, H25, H26, H27, H28	<u>E. coli</u>	4.93E+12	<u>cfu/year</u>
125.	Rockfish River, North Fork	Bacteria Total Maximum Daily Load Development for Rockfish River, North Fork Rockfish River, and South Fork Rockfish River	<u>Nelson</u>	<u>H15</u>	<u>E. coli</u>	8.44E+11	<u>cfu/year</u>
<u>126.</u>	Rockfish River, South Fork	Bacteria Total Maximum Daily Load Development for Rockfish River, North Fork Rockfish River, and South Fork Rockfish River	<u>Nelson</u>	<u>H15</u>	<u>E. coli</u>	4.40E+12	<u>cfu/year</u>
<u>127.</u>	Rockfish River	Bacteria Total Maximum Daily Load Development for Rockfish River,	Nelson	<u>H15,</u> <u>H16</u>	<u>E. coli</u>	5.76E+12	cfu/year

		North Fork Rockfish River,					
		and South Fork Rockfish River					
128.	Tuckahoe Creek and tributaries	Bacteria TMDL for Tuckahoe Creek, Little Tuckahoe Creek, Anderson, Broad, Georges and Readers Branches, and Deep Run	Henrico, Goochland	<u>H39</u>	<u>E. coli</u>	1.05E+13	<u>cfu/year</u>
<u>129.</u>	Turner Creek	Bacteria Total Maximum Daily Load Development for Hat Creek, Piney River, Rucker Run, Mill Creek, Rutledge Creek, Turner Creek, Buffalo River and Tye River	Amherst	<u>H12</u>	<u>E. coli</u>	1.57E+11	<u>cfu/year</u>
130.	Mill Creek	Bacteria Total Maximum Daily Load Development for Hat Creek, Piney River, Rucker Run, Mill Creek, Rutledge Creek, Turner Creek, Buffalo River and Tye River	Amherst	<u>H11</u>	<u>E. coli</u>	2.08E+11	<u>cfu/year</u>
131.	Hat Creek	Bacteria Total Maximum Daily Load Development for Hat Creek, Piney River, Rucker Run, Mill Creek, Rutledge Creek, Turner Creek, Buffalo River and Tye River	Nelson	<u>H09</u>	<u>E. coli</u>	6.02E+11	cfu/year

132.	Rutledge Creek	Bacteria Total Maximum Daily Load Development for Hat Creek, Piney River, Rucker Run, Mill Creek, Rutledge Creek, Turner Creek, Buffalo River	Amherst	<u>H12</u>	<u>E. coli</u>	1.15E+12	<u>cfu/year</u>
133.	Rucker Run	and Tye River Bacteria Total Maximum Daily Load Development for Hat Creek, Piney River, Rucker Run, Mill Creek, Rutledge Creek, Turner Creek, Buffalo River and Tye River	Nelson	<u>H13</u>	<u>E. coli</u>	1.32E+12	<u>cfu/year</u>
134.	Piney River	Bacteria Total Maximum Daily Load Development for Hat Creek, Piney River, Rucker Run, Mill Creek, Rutledge Creek, Turner Creek, Buffalo River and Tye River	Amherst, Nelson	<u>H10</u>	E. coli	2.44E+12	cfu/year
135.	Buffalo River	Bacteria Total Maximum Daily Load Development for Hat Creek, Piney River, Rucker Run, Mill Creek, Rutledge Creek, Turner Creek, Buffalo River and Tye River	Amherst	H11, H12	<u>E. coli</u>	2.54E+12	<u>cfu/year</u>
136.	Tye River	Bacteria Total Maximum Daily Load Development for Hat Creek, Piney River, Rucker Run, Mill Creek, Rutledge Creek, Turner Creek, Buffalo River and Tye River	Amherst, Nelson	H09, H10, H11, H12, H13	E. coli	1.33E+13	cfu/year
<u>137.</u>	Upham Brook and tributaries	Total Maximum Daily Load	Henrico, Richmond City	<u>G05</u>	E. coli	8.04E+10	cfu/year

		Development for the Upham Brook Watershed					
<u>138.</u>	White Oak Swamp	Bacteria TMDL for White Oak Swamp	<u>Henrico</u>	<u>G06</u>	E. coli	1.58E+12	cfu/year
<u>139.</u>	Willis River and tributaries	Fecal coliform TMDL Development for Willis River	Cumberland, Buckingham	<u>H35,</u> <u>H36</u>	<u>Fecal</u> <u>coliform</u>	3.15E+11	cfu/year

TABLE B1 - UPPER JAMES RIVER BASIN RECOMMENDED SEGMENT CLASSIFICATION

Stream Name	Segment No.	Mile to Mile	Classification	Comments
Maury River	2-4	80.3-0.0	E.L.	Main & tributaries
James River	2-5	271.5-266.0	W.Q.	Main only
James River	2-6	266.0-115.0	E.L.	Main & tributaries except Tye & Rivanna River
Tye River	2-7	41.7-0.0	E.L.	Main & tributaries except Rutledge Creek
Rutledge Creek	2-8	3.0-0.0	W.Q.	Main only
Piney River	2-9	20.6-0.0	E.L.	Main & tributaries
Rivanna River	2-10	20.0-0.0	E.L.	Main & tributaries
Rivanna River	2-11	38.1-20.0	W.Q.	Main only
Rivanna River	2-12	76.7-38.1	E.L.	Main & tributaries
S.F. Rivanna River	2-13	12.2-0.0	E.L.	Main & tributaries
Mechum River	2-14	23.1-0.0	E.L.	Main & tributaries
N.F. Rivanna River	2-15	17.0-0.0	E.L.	Main & tributaries except Standardsville Run
Standardsville Run	2-16	1.2-0.0	W.Q.	Main only
Appomattox River	2-17	156.2-27.7	E.L.	Main & tributaries except Buffalo Creek, Courthouse Branch, and Deep Creek
Buffalo Creek	2-18	20.9-0.0	E.L.	Main & tributaries except Unnamed Tributary unnamed tributary @ R.M. 9.3
Unnamed Tributary tributary of Buffalo Creek @ R.M. 9.3	2-19	1.3-0.0	W.Q.	Main only
Courthouse Branch	2-20	0.6-0.0	W.Q.	Main only
Deep Creek	2-21	29.5-0.0	E.L.	Main & tributaries except Unnamed Tributary <u>unnamed tributary</u> @ R.M. 25.0

Notes:

The total WLA can be increased prior to modification provided that DEQ tracks these changes for bacteria TMDLs where the permit is consistent with water quality standards for bacteria.

⁴ ²GS means growing season.

B. Stream segment classifications, effluent limitations including water quality based effluent limitations, and wasteload allocations.

Unnamed Tributary tributary of Deep Creek @ R.M. 25.0	2.2-0.0	W.Q.	Main only
---	---------	------	-----------

TABLE B2 - UPPER JAMES RIVER BASIN LOAD ALLOCATIONS BASED ON EXISTING DISCHARGE POINT $^7\,$

Stream Name	Segment Number	Classification	Mile to Mile	Significant Discharges	Total Assimilative Capacity of Stream BOD ₅ lbs/day	Wasteload Allocation BOD ₅ lbs/day ²	Reserve BOD ₅ lbs/day ⁵
Cedar Creek	2-3	E.L.	1.9- 0.0	Natural Bridge, Inc. STP	35.0	28.0	7.0 (20%)
Elk Creek	2-3	E.L.	2.8- 0.0	Natural Bridge Camp for Boys STP	7.0	3.3	3.7 (53%)
Little Calfpasture River	2-4	E.L.	10.9- 4.0	Craigsville	12.0	9.6	2.4 (20%)
Cabin River	2-4	E.L.	1.7- 0.0	Millboro	Self - sustaining	None	None
Maury River	2-4	E.L.	19.6- 12.2	Lexington STP	380.0	380.0	None
Maury River	2-4	E.L.	12.2- 1.2	Georgia Bonded Fibers	760.0	102.0 ³	238.0 (31%)
				Buena Vista STP		420.0	
Maury River	2-4	E.L.	1.2- 0.0	Lees Carpets	790.0	425.0 ³	290.0 (37%)
				Glasgow STP		75.0	
James River	2-5	W.Q.	271.5- 266.0	Owens-Illinois	4,640.0	4,640.0 ³	None
James River	2-6	E.L.	257.5- 231.0	Lynchburg STP	10,100.0	8,000.0	2,060.0 (20%)
				Babcock & Wilcox-NNFD		40.0^{3}	
James River	2-6	E.L.	231.0- 202.0	Virginia Fibre	3,500.0	3,500.0	None
Rutledge Creek	2-8	W.Q.	3.0- 0.0	Amherst STP	46.0	37.0	9.0 (20%)
Town Creek	2-7	E.L.	2.1- 0.0	Lovingston STP	26.0	21.0	5.0 (20%)
Ivy Creek	2-6	E.L.	0.1- 0.0	Schuyler	13.8	11.0	2.8 (20%)
James River	2-6	E.L.	186.0- 179.0	Uniroyal, Inc.	1,400.0	19.3 ⁶	1,336.0 (95%)
				Scottsville STP		45.0	

							1
North Creek	2-6	E.L.	3.1- 0.0	Fork Union STP	31.0	25.0	6.0 (20%)
Howells Branch and Licking Hole Creek	2-14	E.L.	0.7- 0.0	Morton Frozen Foods	20.0	20.0 ³	None
Standardsville Run	2-16	W.Q.	1.2- 0.0	Standardsville STP	17.9	14.3	3.6 (20%)
Rivanna River	2-11	W.Q.	23.5- 20.0	Lake Monticello STP	480.0	380.0	100.0 (20%)
Rivanna River	2-10	E.L.	15.0- 0.0	Palmyra	250.0	4.0	158.0 (63%)
				Schwarzenbach Huber		88.0 ³	
Unnamed Tributary tributary of Whispering Creek	2-6	E.L.	1.2- 0.0	Dillwyn STP	38.0	30.0	8.0 (21%)
South Fork Appomattox River	2-17	E.L.	5.5- 0.0	Appomattox Lagoon	18.8	15.0	3.8 (20%)
Unnamed Tributary tributary of Buffalo Creek	2-19	W.Q.	1.3- 0.0	Hampden-Sydney Coll. STP	10.0	8.0	2.0 (20%)
Appomattox River	2-17	E.L.	106.1- 88.0	Farmville STP	280.0	220.0	60.0 (21%)
Unnamed Tributary tributary of Little Guinea Creek	2-17	E.L.	2.5- 1.3	Cumberland H.S. Lagoon	0.6	0.5	0.1 (20%)
Unnamed Tributary tributary of Tear Wallet Creek	2-17	E.L.	0.68- 0.0	Cumberland Courthouse	8.8	7.0	1.8 (20%)
Courthouse Branch	2-22	W.Q.	2.2- 0.0	Amelia STP	21.0	17.0	4.0 (20%)
Unnamed Tributary tributary of Deep Creek	2-22	W.Q.	2.2- 0.0	Crewe STP	50.3 ^{11,12}	50.1 ^{11, 12}	0.2 (0.4%) ^{11,12,13}

Notes:

Source: Wiley & Wilson, Inc.

TABLE B3 - UPPER JAMES RIVER BASIN ADDITIONAL LOAD ALLOCATIONS BASED ON RECOMMENDED DISCHARGE POINT

Stream Name	Segment Number	Classification ¹		Significant Discharges	Total Assimilative Capacity of Stream BOD ₅ lbs/day	Wasteload ² Allocation BOD ₅ lbs/day	Reserve ⁴ BOD ₅ lbs/day ⁵
Mill Creek	2-4	E.L.	5.5-0.0	Millboro	30.0	7.3	22.7 (76%)
Calfpasture River	2-4	E.L.	4.9-0.0	Goshen	65.0	12.0	53.0 (82%)
Maury River	2-4	E.L.	1.2-0.0	Lees Carpet	790.0	425.0 ³	235.0 (30%)
				Glasgow Regional S.T.P. STP		130.0	
Buffalo River	2-7	E.L.	9.6-0.0	Amherst STP	150.0	120.0	30.0 (20%)
Rockfish River	2-6	E.L.	9.5-0.0	Schuyler STP	110.0	25.0	85.0 (77%)
Standardsville Run		E.L.		Standardsville	Land Application		
South Fork Appomattox River		E.L.		Appomattox Lagoon	Connect to Recor	nmended Facility River Basin	in Roanoke
Buffalo Creek	2-17	E.L.	9.3-7.7	Hampden-Sydney College	46.0	23.0	23.0 (50%)
Unnamed trib. tributary of Tear Wallet Creek		E.L.		Cumberland Courthouse	Land Application Recommended		
Courthouse Branch		E.L.		Amelia	Land Application Recommended		
Deep Creek	2-17	E.L.	25.0- 12.8	Crewe STP	69.0	55.0	14.0 (20%)

¹Recommended classification.

²Based on 2020 loads or stream assimilative capacity less 20%.

³Load allocation based on published NPDES permits.

⁴This assimilative capacity is based upon an ammonia loading no greater than 125.1 lbs/day.

⁵Percentages refer to reserve as percent of total assimilative capacity. Minimum reserve for future growth and modeling accuracy is 20% unless otherwise noted.

⁶No NPDES Permits published (BPT not established) allocation base on maximum value monitored.

⁷This table is for the existing discharge point. The recommended plan may involve relocation or elimination of stream discharge.

⁸Assimilative capacity will be determined upon completion of the ongoing study by Hydroscience, Inc.

⁹Discharges into Karnes Creek, a tributary to the Jackson River.

¹⁰Discharges into Wilson Creek, near its confluence with Jackson River.

¹¹Five-day Carbonaceous Biological Oxygen Demand (cBOD₅).

¹²Revision supersedes all subsequent Crewe STP stream capacity, allocation, and reserve references.

¹³0.4% reserve: determined by SWCB Piedmont Regional Office.

Source: Wiley & Wilson, Inc.

TABLE B4 - SEGMENT CLASSIFICATION UPPER JAMES-JACKSON RIVER SUBAREA

Stream Name	Segment Number	Mile to Mile	Stream Classification	Comments
Back Creek	2-1	16.06-8.46	W.Q.	Main Only
Jackson River	2-1	95.70-24.90	E.L.	Main and Tributaries
Jackson River	2-2	24.90-0.00	W.Q.	Main Only
Jackson River	2-2	24.90-0.00	E.L.	Tributaries Only
James River	2-3	349.50-308.50	E.L.	Main and Tributaries
James River	2-3	308.50-279.41	E.L.	Main and Tributaries

TABLE B5 - UPPER JAMES-JACKSON RIVER SUBAREA WASTELOAD ALLOCATIONS BASED ON EXISTING DISCHARGE POINT1

MAP LOCATION	STREAM NAME	SEGMENT NUMBER	SEGMENT CLASSIFICATION STANDARDS	MILE to ² MILE	DISCHARGER	VPDES PERMIT NUMBER	VPDES PERMIT LIMITS BOD ₅ kg/day	303(e) ³ WASTELOAD ALLOCATION BOD ₅ kg/day
1	Jackson River	2-1	E.L.	93.05-	Virginia Trout	VA0071722	N/A	Secondary
В	Warm Springs Run	2-1	E.L.	3.62-0.00	Warm Springs STP	VA0028233	9.10	Secondary
3	Back Creek	2-1	W.Q.	16.06-8.46	VEPCO	VA0053317	11.50	11.50
С	X-trib to Jackson River	2-1	E.L.	0.40-0.0	Bacova	VA0024091	9.10	Secondary
D	Hot Springs Run	2-1	E.L.	5.30-0.00	Hot Springs Reg. STP	VA0066303	51.10	Secondary
Е	X-trib to Cascades Creek	2-1	E.L.	3.00-0.00	Ashwood- Healing Springs STP	VA0023726	11.30	Secondary
F	Jackson River	2-1	E.L.	50.36-	U.S. Forest Service Bolar Mountain	VA0032123	1.98	Secondary

Notes:
Recommended classification.

²Based on 2020 loads or stream assimilative capacity less 20%.

³Load allocation based on published NPDES permit.

⁴Percentages refer to reserve as percent of total assimilative capacity. Minimum reserve for future growth and modeling accuracy is 20% unless otherwise noted.

⁵Assimilative capacity will be determined upon completion of the ongoing study by Hydroscience, Inc.

G	Jackson River	2-1	E.L.	43.55	U.S. Army COE Morris Hill Complex	VA0032115	1.70	Secondary
Н	Jackson River	2-1	E.L.	29.84-	Alleghany County Clearwater Park	VA0027955	5.70	Secondary
4	Jackson River	2-1	E.L.	25.99	Covington City Water Treatment Plant	VA0058491	N/A	Secondary
5	Jackson River	2-2	W.Q.	24.64- 19.03	Westvaco	VA0003646	4,195.00	4,195.00 ⁴
6					Covington City ⁵ Asphalt Plant	VA0054411	N/A	N/A
7					Hercules, Inc ⁶	VA0003450	94.00	94.00
J	Jackson River	2-2	W.Q.	19.03-10.5	Covington STP	VA0025542	341.00	341.00
K	Jackson River			10.5-0.0	Low Moor STP ⁷	VA0027979	22.70	22.70
M					D.S. Lancaster CC ⁸	VA0028509	3.60	3.60
L					Selma STP ⁹	VA0028002	59.00	59.00
10					The Chessie System ¹⁰	VA0003344	N/A	N/A
N					Clifton Forge STP ¹¹	VA0002984	227.00	227.00
11					Lydall ¹²	VA0002984	6.00	6.00
P					Iron Gate STP ¹³	VA0020541	60.00	60.00
8	Paint Bank Branch	2-2	E.L.	1.52	VDGIF Paint Bank Hatchery	VA0098432	N/A	Secondary
I	Jerrys Run	2-2	E.L.	6.72-	VDOT 1-64 Rest Area	VA0023159	0.54	Secondary
AA	East Branch (Sulfer Spring)	2-2	E.L.	2.16	Norman F. Nicholas	VA0078403	0.05	Secondary
ВВ	East Branch (Sulfer Spring)	2-2	E.L.	1.91-	Daryl C. Clark	VA0067890	0.068	Secondary
9	Smith Creek	2-2	E.L.	3.44-	Clifton Forge Water Treatment Plant	VA0006076	N/A	Secondary
О	Wilson Creek	2-2	E.L.	0.20-0.0	Cliftondale ¹⁴ Park STP	VA0027987	24.00	Secondary
2	Pheasanty Run	2-3	E.L.	0.01-	Coursey Springs	VA0006491	434.90	Secondary

					Craig Spring			
Q	Grannys Creek	2-3	E.L.	1.20-	Conference Grounds	VA0027952	3.40	Secondary
CC	X-trib to Big Creek	2-3	E.L.	1.10-	Homer Kelly Residence	VA0074926	0.05	Secondary
12	Mill Creek	2-3	E.L.	0.16-	Columbia Gas Transmission Corp.	VA0004839	N/A	Secondary
R	John Creek	2-3	E.L.	0.20-	New Castle STP (old)	VA0024139	21.00	Secondary
S	Craig Creek	2-3	E.L.	48.45-36.0	New Castle STP (new)	VA0064599	19.90	Secondary
Т	Craig Creek	2-3	E.L.	46.98-	Craig County Schools McCleary E.S.	VA0027758	0.57	Secondary
DD	Eagle Rock Creek	2-3	E.L.	0.08-	Eagle Rock STP ^{15 (Proposed)}	VA0076350	2.30	Secondary
U	X-trib to Catawba Creek	2-3	E.L.	0.16	VDMH & R Catawba Hospital	VA0029475	13.60	Secondary
14	Catawba Creek	2-3	E.L.	23.84	Tarmac- Lonestar	VA0078393	0.80	Secondary
FF	Borden Creek	2-3	E.L.	2.00-	Shenandoah Baptist Church Camp	VA0075451	0.88	Secondary
EE	X-trib to Borden Creek	2-3	E.L.	0.36	David B. Pope	VA0076031	0.07	Secondary
V	X-trib to Catawba Creek	2-3	E.L.	3.21-	U.S. FHA Flatwood Acres	VA0068233	0.03	Secondary
W	Catawba Creek	2-3	E.L.	11.54-	Fincastle STP	VA0068233	8.50	Secondary
X	Looney Mill Creek	2-3	E.L.	1.83-	VDOT I-81 Rest Area	VA0023141	0.91	Secondary
Y	X-trib to Stoney	2-3	E.L.	0.57	VDOC Field Unit No. 25 Battle Creek	VA0023523	1.10	Secondary
Z	James River	2-3	E.L.	308.5- 286.0	Buchanan STP	VA0022225	27.00	Secondary

TABLE B5 - NOTES Notes:

N/A Currently No BOD₅ limits or wasteload have been imposed by the VPDES permit. Should BOD₅ limits (wasteload) be imposed a WQMP amendment would be required for water quality limited segments only.

¹Secondary treatment levels are required in effluent limiting (E.L.) segments. In water quality limiting (W.Q.) segments quantities listed represent wasteload allocations.

TABLE B6 - RICHMOND CRATER INTERIM WATER QUALITY MANAGEMENT PLAN STREAM CLASSIFICATIONS - JAMES RIVER BASIN

SEGMENT	SEGMENT NUMBER	MILE TO MILE	CLASSIFICATION
USGS HUC02080206 James River	2-19	115.0-60.5	W.Q.
USGS HUC02080207 Appomattox	2-23	30.1-0.0	W.Q.

TABLE B6 - *Note Notes:

A new stream segment classification for the Upper James Basin was adopted in 1981. The SWCB will renumber or realign these segments in the future to reflect these changes. This Plan covers only a portion of these segments.

TABLE B7 - RICHMOND CRATER INTERIM WATER QUALITY MANAGEMENT PLAN – CURRENT PERMITTED WASTELOADS (March 1988)

		SUMMER (June-October)							WINTER (November-M				
	FLOW	ВС)D ₅	NH ₃ -N ¹		DO^2		FLOW	ВС	DD_5	NH_3-N^1		DO^2
	(mgd)	(lbs/d)	(mg/l)	(lbs/d)	(mg/l)	(mg/l)	(mgd)	(lbs/d)	(mg/l)	(lbs/d)	(mg/l)	(mg/l)	
City of Richmond STP ³	45.00	3002	8.0	-	-	-		45.00	5367	14.3	(lbs/d)	-	-
E.I. DuPont- Spruance	8.68	936	-	-	-	-		8.68	936	-	-	-	-
Falling Creek STP	9.00	1202	16.0	-	-	5.9		9.00	2253	30.0	-	-	5.9
Proctor's Creek STP	6.40	1601	30.0	-	-	5.9		11.80	2952	30.0	-	-	5.9
Reynolds Metals Company	0.39	138	-	7	-	-		0.39	138	-	-	-	-

²Ending river miles have not been determined for some effluent limited segments.

³These allocations represent current and original (1977 WQMP) modeling. Future revisions may be necessary based on Virginia State Water Control Board modeling.

⁴The total assimilative capacity at critical stream flow for this portion of Segment 2-2 has been modeled and verified by Hydroscience, Inc. (March 1977) to be 4,914 kg/day BOD₅.

⁵The discharge is to an unnamed tributary to the Jackson River at Jackson River mile 22.93.

⁶The discharge is at Jackson River mile 19.22.

⁷The discharge is to the mouth of Karnes Creek, a tributary to the Jackson River at Jackson River mile 5.44.

⁸The discharge is at Jackson River mile 6.67.

⁹The discharge is at Jackson River mile 5.14.

¹⁰The discharge is at Jackson River mile 4.72.

¹¹The discharge is at Jackson River mile 3.46.

¹²The discharge is at Jackson River mile 1.17.

¹³The discharge is at Jackson River mile 0.76.

¹⁴The discharge is to the mouth of Wilson Creek, a tributary to the Jackson River at Jackson River mile 2.44.

¹⁵The discharge is to the mouth of Eagle Rock Creek, a tributary to the Jackson River at Jackson River mile 330.35.

Henrico STP	30.00	3005	12.0	-	-	5.9	30.00	7260	29.0	7	-	5.9
American Tobacco Company	1.94	715	-	-	-	-	1.94	716	-	-	-	-
ICI Americas, Inc.	0.20	152	-	-	-	-	0.20	152	-	-	-	-
Phillip Morris-Park 500	1.50	559	-	-	-	-	1.50	557	-	-	-	-
Allied (Chesterfield)	51.00	1207	-	-	-	-	51.00	1207		-	-	-
Allied (Hopewell)	150.00	2500	-	-	-	-	150.00	2500	-	-	-	-
Hopewell Regional WTF	34.08	12507	44.0	-	-	4.8	34.08	12507	44.0	-	-	4.8
Petersburg STP	15.00	2804	22.4	-	-	5.0	15.00	2804	22.4	-	-	5.0
TOTAL	353.19	30328					358.59	39349		-		

Notes:

TABLE B7 - WASTELOAD ALLOCATIONS FOR THE YEAR 1990

		SUM	MER (Ju	ne-Octol	oer)				WINT	ER (Nov	ember-N	ſay)
	EI OW (mad)	СВО	DD_5	NH_3	$-N^{1,3}$	DO ² (mg/l)		CBC	DD_5	NH	₃ -N ¹	DO ² (mg/l)
	FLOW (mgd)	(lbs/d)	(mg/l)	(lbs/d)	(mg/l)	DO (IIIg/I)		(lbs/d)	(mg/l)	(lbs/d)	(mg/l)	DO (IIIg/I)
City of Richmond STP	45.00	3002	8.0	2403	6.4	5.6		5367	14.3	5707	15.2	5.6
E.I. DuPont-Spruance	11.05	948		590		4.4		948		756		2.9
Falling Creek STP	10.10	1348	16.0	539	6.4	5.9		2023	24.0	1281	15.2	5.9
Proctor's Creek STP	12.00	1602	16.0	961	9.6	5.9		2403	24.0	1402	14.0	5.9
Reynolds Metals Co.	0.49	172		8		6.5		172		8		6.5
Henrico STP	30.00	3002	12.0	2403	9.6	5.6		4756	19.0	3504	44.0	5.6
American Tobacco Co.	2.70	715		113		5.8		715		113		5.8
ICI Americas, Inc.	0.20	167		8		5.8		167		8		3.1
Phillip Morris-Park 500	2.20	819		92		4.6		819		92		4.6
Allied (Chesterfield)	53.00	1255		442		5.7		1255		442		5.7
Allied (Hopewell)	165.00	2750		10326		6.1		2750		10326		6.1
Hopewell Regional WTF	34.07	12502	44.0	12091	36.2	4.8		12502	44.0	10291	36.2	4.8
Petersburg STP	15.00	2802	22.4	801	6.4	5.0		2802	22.4	2028	16.2	5.0
TOTAL	380.81	31084		28978				36679	3595 8			

Notes:

¹NH₃-N values represent ammonia as nitrogen.

²Dissolved oxygen limits represent average minimum allowable levels.

³Richmond STP's BOD₅ is permitted as CBOD₅

¹NH₃-N values represent ammonia as nitrogen.

²Dissolved oxygen limits represent average minimum allowable levels.

³Allied (Hopewell) allocation may be redistributed to the Hopewell Regional WTF by VPDES permit.

TABLE B7 - WASTELOAD ALLOCATION FOR THE YEAR 2000

		SUM	MER (Ju	ne-Octol	ber)			WINTER (November-May)				
	ELOW (m = 4)	СВО	OD ₅	NH ₃	-N ^{1,3}	DO ² (/I)	СВО	OD ₅	NH	₃ -N ¹	DO ² (mg/l)	
	FLOW (mgd)	(lbs/d)	(mg/l)	(lbs/d)	(mg/l)	DO ² (mg/l)	(lbs/d)	(mg/l)	(lbs/d)	(mg/l)	DO (mg/1)	
City of Richmond STP	45.08	3002	8.0	2403	6.4	5.6	5367	14.3	5707	15.2	5.6	
E.I. DuPont-Spruance	196.99	948		590		4.4	948		756		2.9	
Falling Creek STP	10.10	1348	16.0	539	6.4	5.9	2023	24.0	1281	15.2	5.9	
Proctor's Creek STP	16.80	1602	11.4	961	6.9	5.9	2403	17.1	1402	10.0	5.9	
Reynolds Metals Co.	0.78	172		13		6.5	172		13		6.5	
Henrico STP	32.80	3002	11.0	2403	8.8	5.6	4756	17.4	3504	12.8	5.6	
American Tobacco Co.	3.00	715		113		5.8	715		113		5.8	
ICI Americas, Inc.	0.20	167		8		5.8	167		8		3.1	
Phillip Morris-Park 500	2.90	819		92		4.6	819		92		4.6	
Allied (Chesterfield)	56.00	1255		442		5.7	1255		442		5.7	
Allied (Hopewell)	170.00	2750		10326		6.1	2750		10326		6.1	
Hopewell Regional WTF	36.78	12502	40.7	12091	33.5	4.8	12502	40.7	10291	33.5	4.8	
Petersburg STP	15.00	2802	22.4	801	6.4	5.0	2802	22.4	2028	16.2	5.0	
TOTAL	406.43	31084		28982			36679		35963			

TABLE B7 - WASTELOAD ALLOCATIONS FOR THE YEAR 2010

	SUMMER (June-October)					WINTER (November-May)				May)	
	FLOW (mgd)	СВО	OD_5	NH ₃	$NH_3-N^{1,3}$ $DO^2 \text{ (mg/l)}$		CBOD ₅		NH ₃ -N ¹		DO ² (mg/l)
	FLOW (Iligu)	(lbs/d)	(mg/l)	(lbs/d)	(mg/l)	DO (IIIg/I)	(lbs/d)	(mg/l)	(lbs/d)	(mg/l)	DO (IIIg/I)
City of Richmond STP	45.86	3002	7.8	2403	6.3	5.6	5367	14.0	5707	14.9	5.6
E.I. DuPont-Spruance	16.99	948		590		4.4	948		756		2.9
Falling Creek STP	10.10	1348	16.0	539	6.4	5.9	2023	24.0	1281	15.2	5.9
Proctor's Creek STP	24.00	1602	8.0	961	4.8	5.9	2403	12.0	1402	7.0	5.9
Reynolds Metals Co.	0.78	172		13		6.5	172		13		6.5
Henrico STP	38.07	3002	9.5	2403	7.6	5.6	4756	15.0	3504	11.0	5.6
American Tobacco Co.	3.00	715		113		5.8	715		113		5.8
ICI Americas, Inc.	0.20	167		8		5.8	167		8		3.1
Phillip Morris-Park 500	2.90	819		92		4.6	819		92		4.6

 $[\]frac{Notes:}{^{1}NH_{3}\text{-}N} \ values \ represent \ ammonia \ as \ nitrogen.$

 $^{^2\}mbox{Dissolved}$ oxygen limits represent average minimum allowable levels.

³Allied (Hopewell) allocation may be redistributed to the Hopewell Regional WTF by VPDES permit.

Allied (Chesterfield)	56.00	1255		442		5.7	1255		442		5.7
Allied (Hopewell)	180.00	2750		10326		6.1	2750		10326		6.1
Hopewell Regional WTF	39.61	12502	37.8	10291	31.1	4.8	12502	37.8	10291	31.1	4.8
Petersburg STP	15.00	2802	22.4	801	6.4	5.0	2802	22.4	2028	16.2	5.0
TOTAL	432.1	31084		28982			36679		35963		

Notes:

The following table presents nitrogen and phosphorus wasteload allocations for the identified significant dischargers and the total nitrogen and total phosphorus wasteload allocations for the listed facilities.

Virginia Waterbody ID	Discharger Name	VPDES Permit No.	Total Nitrogen (TN) Wasteload Allocation (lbs/yr)	Total Phosphorus (TP) Wasteload Allocation (lbs/yr)
I37R	Buena Vista STP	VA0020991	41,115	3,426
I09R	Clifton Forge STP	VA0022772	36,547	3,046
I09R	Covington STP	VA0025542	54,820	4,568
H02R	Georgia Pacific	VA0003026	122,489	49,658
I37R	Lees Carpets	VA0004677	30,456	12,182
I35R	Lexington-Rockbridge WQCF	VA0088161	54,820	4,568
I09R	Low Moor STP	VA0027979	9,137	761
I09R	Lower Jackson River STP	VA0090671	27,410	2,284
I04R	MeadWestvaco	VA0003646	394,400	159,892
H12R	Amherst STP	VA0031321	10,964	914
H05R	BWX Technologies Inc.	VA0003697	187,000	1,523
H05R	Greif Inc.	VA0006408	73,246	29,694
H31R	Lake Monticello STP	VA0024945	18,182	1,515
H05R	Lynchburg STP ¹	VA0024970	536,019	33,501
H28R	Moores Creek Regional STP	VA0025518	274,100	22,842
H38R	Powhatan CC STP	VA0020699	8,588	716
J11R	Crewe WWTP	VA0020303	9,137	761
J01R	Farmville WWTP	VA0083135	43,856	3,655
G02E	R. J. Reynolds	VA0002780	25,583	1,919
G01E	E I du Pont - Spruance	VA0004669	201,080	7,816
G01E	Falling Creek WWTP	VA0024996	153,801	15,380
G01E	Henrico County WWTP	VA0063690	1,142,085	114,209
G03E	Honeywell – Hopewell	VA0005291	1,090,798	51,592
G03R	Hopewell WWTP	VA0066630	1,827,336	76,139

¹NH₃-N values represent ammonia as nitrogen.

²Dissolved oxygen limits represent average minimum allowable levels.

³Allied (Hopewell) allocation may be redistributed to the Hopewell Regional WTF by VPDES permit.

C. Nitrogen and phosphorus wasteload allocations to restore the Chesapeake Bay and its tidal rivers.

G15E	HRSD – Boat Harbor STP	VA0081256	740,000	76,139
G11E	HRSD – James River STP	VA0081272	1,250,000	60,911
G10E	HRSD – Williamsburg STP	VA0081302	800,000	68,525
G02E	Philip Morris – Park 500	VA0026557	139,724	2,650
G01E	Proctors Creek WWTP	VA0060194	411,151	41,115
G01E	Richmond WWTP ¹	VA0063177	1,096,402	68,525
G02E	Dominion-Chesterfield ²	VA0004146	352,036	210
J15R	South Central WW Authority	VA0025437	350,239	35,024
G07R	Chickahominy WWTP	VA0088480	6,167	123
G05R	Tyson Foods – Glen Allen	VA0004031	19,552	409
G11E	HRSD – Nansemond STP	VA0081299	750,000	91,367
G15E	HRSD – Army Base STP	VA0081230	610,000	54,820
G15E	HRSD – VIP WWTP	VA0081281	750,000	121,822
G15E	JH Miles & Company	VA0003263	153,500	21,500
C07E	HRSD – ChesElizabeth STP	VA0081264	1,100,000	108,674
	TOTALS		14,901,739	1,354,375

NOTES Notes:

9VAC25-720-70. Rappahannock River Basin.

A. Total maximum Daily Load daily loads (TMDLs).

<u>TMDL</u> <u>#</u>	Stream Name	TMDL Title	City/County	WBID	<u>Pollutant</u>	<u>WLA</u> ¹	<u>Units</u>
<u>1.</u>	Broad Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Broad and Jackson Creeks	<u>Middlesex</u>	<u>E26</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>2.</u>	Central Branch Carter Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Rappahannock River: Carter Creek	<u>Lancaster</u>	<u>E26</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>3.</u>	Eastern Branch Carter Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Rappahannock River: Carter Creek	<u>Lancaster</u>	<u>E26</u>	Fecal coliform	N/A ²	MPN/day

¹Wasteload allocations for localities served by combined sewers are based on dry weather design flow capacity. During wet weather flow events the discharge shall achieve a TN concentration of 8.0 mg/l and a TP concentration of 1.0 mg/l.

²Wasteload allocations are "net" loads, based on the portion of the nutrient discharge introduced by the facility's process waste streams, and not originating in raw water intake.

<u>4.</u>	Western Branch Carter Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Rappahannock River: Carter Creek	<u>Lancaster</u>	<u>E26</u>	<u>Fecal</u> <u>coliform</u>	<u>N/A²</u>	MPN/day
<u>5.</u>	Carter Run	Bacteria TMDL for Carter Run	<u>Fauquier</u>	<u>E02</u>	E. coli	1.12E+12	<u>cfu/year</u>
<u>6.</u>	Bells Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Corrotoman River	<u>Lancaster</u>	E26	Fecal coliform	<u>N/A²</u>	MPN/day
<u>7.</u>	Eastern Branch Corrotoman River	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Corrotoman River	<u>Lancaster</u>	<u>E26</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>8.</u>	Ewells Prong	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Corrotoman River	<u>Lancaster</u>	<u>E26</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>9.</u>	Hills Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Corrotoman River	Lancaster	<u>E26</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>10.</u>	Millenbeck Prong	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Corrotoman River	Lancaster	<u>E26</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>11.</u>	Myer Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Corrotoman River	<u>Lancaster</u>	<u>E26</u>	<u>Fecal</u> <u>coliform</u>	<u>N/A²</u>	MPN/day

12.	Senior Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Corrotoman River	<u>Lancaster</u>	<u>E26</u>	Fecal coliform	<u>N/A²</u>	MPN/day
13.	Taylor Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Corrotoman River	<u>Lancaster</u>	<u>E26</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>14.</u>	Western Branch Corrotoman River	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Corrotoman River	<u>Lancaster</u>	<u>E26</u>	Fecal coliform	N/A^2	MPN/day
<u>15.</u>	Deep Run	Bacteria TMDL for Deep Run	<u>Fauquier</u>	<u>E10</u>	<u>E. coli</u>	<u>0</u>	<u>cfu/year</u>
<u>16.</u>	Farnham Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Farnham Creek	Richmond	<u>E25</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>17.</u>	Great Run	Bacteria TMDL for Great Run	<u>Fauquier</u>	<u>E02</u>	E. coli	4.35E+12	cfu/year
<u>18.</u>	<u>Greenvale</u> <u>Creek</u>	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Rappahannock River: Towles Point to Deep Creek	<u>Lancaster</u>	<u>E25</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>19.</u>	Rappahannock River, Beach Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Rappahannock River: Towles Point to Deep Creek	<u>Lancaster</u>	E25, E26	Fecal coliform	<u>N/A²</u>	MPN/day
<u>20.</u>	Hoskins Creek	Bacteria Total Maximum Daily Load (TMDL) Devlopment for the Hoskins Creek Watershed	<u>Essex</u>	<u>E23</u>	Enterococci	7.56E+09	<u>cfu/day</u>
21.	<u>Lagrange Creek</u>	Total Maximum Daily Load (TMDL) Report for Shellfish Areas	<u>Middlesex</u>	<u>E25</u>	Fecal coliform	<u>N/A²</u>	MPN/day

		Listed Due to Bacterial Contamination - Lagrange and Robinson Creeks					
22.	Robinson Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Lagrange and Robinson Creeks	<u>Middlesex</u>	<u>E25</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
<u>23.</u>	Deep Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Lancaster, Deep, and Mulberry Creeks	<u>Lancaster</u>	<u>E25</u>	<u>Fecal</u> coliform	N/A^2	MPN/day
<u>24.</u>	Lancaster Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Lancaster, Deep, and Mulberry Creeks	Lancaster, Richmond	<u>E25</u>	Fecal coliform	N/A^2	MPN/day
<u>25.</u>	Mulberry Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Lancaster, Deep, and Mulberry Creeks	<u>Lancaster</u>	<u>E25</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
<u>26.</u>	Locklies Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Locklies and Mill Creeks	Middlesex	<u>E26</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>27.</u>	Mill Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Locklies and Mill Creeks	<u>Middlesex</u>	<u>E26</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>28.</u>	Mountain Run	Fecal Coliform TMDL Mountain Run Watershed	<u>Culpeper</u>	<u>E09</u>	Fecal coliform	1.36E+13	cfu/year
<u>29.</u>	Mine Run	Bacteria TMDLs for Mountain Run and Mine Run	Orange	<u>E17</u>	<u>E. coli</u>	1.25E+11	cfu/year
<u>30.</u>	Mountain Run	Bacteria TMDLs for Mountain Run and Mine Run	<u>Orange</u>	<u>E17</u>	<u>E. coli</u>	2.26E+11	cfu/year

<u>31.</u>	Muddy Run, lower	Bacteria TMDL for Muddy Run	Culpeper	<u>E07</u>	E. coli	2.09E+10	<u>cfu/year</u>
<u>32.</u>	Muddy Run, upper	Bacteria TMDL for Muddy Run	<u>Culpeper</u>	<u>E07</u>	E. coli	<u>0</u>	cfu/year
<u>33.</u>	Farmers Hall Creek	Bacteria TMDLs for Occupacia Creek and Farmers Hall Creek	Essex	<u>E22</u>	<u>E. coli</u>	7.58E+08	cfu/day
<u>34.</u>	Occupacia Creek	Bacteria TMDLs for Occupacia Creek and Farmers Hall Creek	<u>Essex</u>	<u>E22</u>	<u>E. coli</u>	6.27E+09	<u>cfu/day</u>
<u>35.</u>	Mosquito Creek	Oyster and Mosquito Creeks Total Maximum Daily Load Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination	<u>Lancaster</u>	<u>E26,</u> <u>C01</u>	<u>Fecal</u> coliform	9.32E+08	MPN/day
<u>36.</u>	Oyster Creek	Oyster and Mosquito Creeks Total Maximum Daily Load Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination	<u>Lancaster</u>	E26, C01	Fecal coliform	1.36E+09	MPN/day
<u>37.</u>	Unnamed tributary to the Rapidan River	Bacteria Total Maximum Daily Load Development for the Rapidan River Basin	Orange	<u>E13</u>	E. coli	6.99E+09	cfu/year
<u>38.</u>	Marsh Run	Bacteria Total Maximum Daily Load Development for the Rapidan River Basin	<u>Orange</u>	<u>E13</u>	<u>E. coli</u>	6.72E+10	<u>cfu/year</u>
<u>39.</u>	Blue Run	Bacteria Total Maximum Daily Load Development for the Rapidan River Basin	<u>Orange</u>	<u>E13</u>	<u>E. coli</u>	8.75E+10	cfu/year
<u>40.</u>	Cedar Run	Bacteria Total Maximum Daily Load Development for the Rapidan River Basin	Culpeper	<u>E16</u>	<u>E. coli</u>	1.82E+12	cfu/year
41.	Rapidan River	Bacteria Total Maximum Daily Load Development for the Rapidan River Basin	Orange, Culpeper, Greene, Madison	E11, E12, E13, E14, E15, E16, E17, E18	E. coli	1.98E+13	cfu/year
<u>42.</u>	Rapidan River	Bacteria Total Maximum Daily Load Development for the Rapidan River Basin	Madison, Greene, Orange	E11, E12, E13	<u>E. coli</u>	3.26E+13	cfu/year

43.	Parrotts Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Rappahannock River: Mud and Parrotts Creeks	<u>Middlesex</u>	<u>E25</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
44.	Weeks (Mud) Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Rappahannock River: Mud and Parrotts Creeks	<u>Middlesex</u>	<u>E25</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>45.</u>	Robinson River, upper	Bacteria TMDL for Robinson River	<u>Madison</u>	<u>E14</u>	E. coli	5.07E+09	cfu/year
<u>46.</u>	Robinson River, lower	Bacteria TMDL for Robinson River	Madison	E14, E15	E. coli	5.03E+10	cfu/year
<u>47.</u>	Little Dark Run	Bacteria TMDL for Robinson River	<u>Madison</u>	<u>E15</u>	E. coli	1.39E+11	<u>cfu/year</u>
48.	Rappahannock River, Bush Park Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Bush Park and Sturgeon Creeks	<u>Middlesex</u>	<u>E26</u>	Fecal coliform	N/A ²	MPN/day
<u>49.</u>	Rappahannock River, Sturgeon Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Bush Park and Sturgeon Creeks	<u>Middlesex</u>	<u>E26</u>	Fecal coliform	N/A ²	MPN/day
<u>50.</u>	Thumb Run	Fecal Coliform TMDL Development for Thumb Run	<u>Fauquier</u>	<u>E01</u>	Fecal coliform	<u>0</u>	cfu/year
51.	Rappahannock River, tidal fresh	Bacteria TMDL for the Tidal Freshwater Rappahannock River Watershed	Caroline, King George, Fredericksburg, Spotsylvania, Stafford	E19, E20, E21	E. coli	1.14E+14	cfu/year
52.	Totuskey Creek	Totuskey and Richardson Creeks Total Maximum Daily Load Report for Shellfish Condemnation Areas Listed Due to Bacteria Pollution	Richmond	<u>E24</u>	Enterococci	6.40E+08	cfu/day
<u>53.</u>	Totuskey Creek, Richardson	Totuskey and Richardson Creeks	Richmond	<u>E24</u>	Fecal coliform	2.29E+09	MPN/day

	<u>Creek,</u> <u>Rappahannock</u> <u>River</u>	Total Maximum Daily Load Report for Shellfish Condemnation Areas Listed Due to Bacteria Pollution					
<u>54.</u>	Hughes River	Bacteria Total Maximum Daily Load Development for the Rappahannock River Basin	Madison	<u>E03</u>	E. coli	8.44E+09	cfu/year
<u>55.</u>	Craig Run	Bacteria Total Maximum Daily Load Development for the Rappahannock River Basin	Fauquier	<u>E08</u>	E. coli	2.72E+10	cfu/year
<u>56.</u>	Browns Run	Bacteria Total Maximum Daily Load Development for the Rappahannock River Basin	<u>Fauquier</u>	<u>E08</u>	<u>E. coli</u>	3.38E+10	cfu/year
<u>57.</u>	Rappahannock River (1) - VAN-E01R-03	Bacteria Total Maximum Daily Load Development for the Rappahannock River Basin	Rappahannock	<u>E01</u>	<u>E. coli</u>	1.79E+11	<u>cfu/year</u>
<u>58.</u>	Rush River	Bacteria Total Maximum Daily Load Development for the Rappahannock River Basin	Rappahannock	<u>E05</u>	<u>E. coli</u>	5.22E+11	cfu/year
<u>59.</u>	Hazel River (2) - 60076	Bacteria Total Maximum Daily Load Development for the Rappahannock River Basin	Madison, Culpeper, Rappahannock	E03, E04, E05, E06, E07	<u>E. coli</u>	7.48E+11	cfu/year
<u>60.</u>	Marsh Run	Bacteria Total Maximum Daily Load Development for the Rappahannock River Basin	<u>Fauquier</u>	<u>E08</u>	<u>E. coli</u>	8.76E+11	cfu/year
61.	Hazel River (1) - VAN-E04R- 01	Bacteria Total Maximum Daily Load Development for the Rappahannock River Basin	Madison, Culpeper, Rappahannock	E03. E04	E. coli	3.92E+12	cfu/year
<u>62.</u>	Rappahannock River (2) - VAN-E08R-04	Bacteria Total Maximum Daily Load Development for the Rappahannock River Basin	Madison, Culpeper, Rappahannock, Fauquier	E01, E02, E03, E04, E05, E06, E07, E08	<u>E. coli</u>	1.85E+13	<u>cfu/year</u>

<u>63.</u>	Rappahannock River (3) - 60081	Bacteria Total Maximum Daily Load Development for the Rappahannock River Basin	Madison, Culpeper, Rappahannock, Fauquier	E01, E02, E03, E04, E05, E06, E07, E08	<u>E. coli</u>	2.18E+13	<u>cfu/year</u>
<u>64.</u>	Rappahannock River, Mark Haven Beach	Shellfish Bacteria Total Maximum Daily Load Development for Upper Rappahannock Tidal River, Unsegmented Estuaries in E23, Little Carter Creek, Jugs Creek, Piscataway Creek, Mark Haven Beach and Garrett's Marina	Essex	<u>E25</u>	Fecal coliform	6.72E+08	counts/day
<u>65.</u>	Rappahannock River, Garrett's Marina	Shellfish Bacteria Total Maximum Daily Load Development for Upper Rappahannock Tidal River, Unsegmented Estuaries in E23, Little Carter Creek, Jugs Creek, Piscataway Creek, Mark Haven Beach and Garrett's Marina	Essex	<u>E24</u>	Fecal coliform	1.94E+09	counts/day
<u>66.</u>	Upper Rappahannock River	Shellfish Bacteria Total Maximum Daily Load Development for Upper Rappahannock Tidal River, Unsegmented Estuaries in E23, Little Carter Creek, Jugs Creek, Piscataway Creek, Mark Haven Beach and Garrett's Marina	Westmoreland, Essex, Richmond	E22, E23, E24	Fecal coliform	7.08E+10	counts/day
<u>67.</u>	Little Carter Creek, Jugs Creek	Shellfish Bacteria Total Maximum Daily Load Development for Upper Rappahannock Tidal River, Unsegmented Estuaries in E23, Little Carter Creek, Jugs Creek, Piscataway Creek, Mark Haven Beach and Garrett's Marina	Richmond	<u>E23</u>	<u>Fecal</u> <u>coliform</u>	1.01E+10	counts/day
<u>68.</u>	Piscataway Creek	Shellfish Bacteria Total Maximum Daily Load Development for Upper Rappahannock Tidal River,	Essex	<u>E23</u>	Fecal coliform	4.92E+10	counts/day

		Unsegmented Estuaries in E23, Little Carter Creek, Jugs Creek, Piscataway Creek, Mark Haven Beach and Garrett's Marina					
<u>69.</u>	Urbanna Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Urbanna Creek	<u>Middlesex</u>	<u>E25</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>70.</u>	Meachim Creek (179A)	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Whiting and Meachim Creeks	Middlesex	<u>E26</u>	<u>Fecal</u> coliform	N/A^2	MPN/day
71.	Meachim Creek (179B)	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Whiting and Meachim Creeks	Middlesex	<u>E26</u>	Fecal coliform	N/A ²	MPN/day
<u>72.</u>	Rappahannock River: Whiting Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Whiting and Meachim Creeks	<u>Middlesex</u>	<u>E26</u>	<u>Fecal</u> coliform	N/A^2	MPN/day

Notes:

- B. Stream segment classifications, effluent limitations including water quality based effluent limitations, and waste load wasteload allocations.
- 9VAC25-720-70 Rappahannock Area Development Commission (RADCO) 208 Area Wide Waste Treatment Management Plan And Potomac-Shenandoah River Basin 303(e) Water Quality Management Plan is included in The Potomac River Basin section.
- C. Nitrogen and phosphorus waste load wasteload allocations to restore the Chesapeake Bay and its tidal rivers.

The following table presents nitrogen and phosphorus waste load allocations for the identified significant dischargers and the total nitrogen and total phosphorus waste load wasteload allocations for the listed facilities.

Virginia Waterbody ID	Discharger Name	VPDES Permit No.	Total Nitrogen (TN) Waste Load Wasteload Allocation (lbs/yr)	Total Phosphorus (TP) Waste Load Wasteload Allocation (lbs/yr)
E09R	Culpeper WWTP -(1) ¹	VA0061590	54,820	4,112
E02R	Marshall WWTP	VA0031763	7,797	585
E09R	Mountain Run STP (2) ²	VA0090212	30,456	2,284

The total WLA can be increased prior to modification provided that DEQ tracks these changes for bacteria TMDLs where the permit is consistent with water quality standards for bacteria.

²There were no point source dischargers in the modeled TMDL area.

E13R	Orange STP	VA0021385	36,547	2,741
E11R	Rapidan STP	VA0090948	7,309	548
E02R	Remington WWTP-(3) ³	VA0076805	30,456	2,284
E02R	Clevengers Corner STP-(4) ⁴	VA0080527	10,964	822
E02R	Warrenton Town STP	VA0021172	30,456	2,284
E18R	Wilderness WWTP	VA0083411	15,228	1,142
E20E	FMC WWTF	VA0068110	65,784	4,934
E20E	Fredericksburg WWTF	VA0025127	54,820	4,112
E21E	Haymount WWTF-(5) ⁵	VA0089125	11,695	877
E24E	Haynesville CC WWTP	VA0023469	2,802	210
E21E	Hopyard Farms STP	VA0089338	6,091	457
E20E	Little Falls Run WWTF	VA0076392	97,458	7,309
E20E	Massaponax WWTF	VA0025658	97,458	7,309
E23R	Montross Westmoreland WWTP	VA0072729	1,584	119
E21E	Oakland Park STP	VA0086789	1,706	128
E23E	Tappahannock WWTP	VA0071471	9,746	731
E26E	Urbanna WWTP	VA0026263	1,218	91
E21R	US Army - Ft. A P Hill WWTP	VA0032034	6,457	484
E23E	Warsaw Aerated Lagoons	VA0026891	3,655	274
C01E	Omega Protein - Reedville	VA0003867	21,213	1,591
C01E	Reedville Sanitary District	VA0060712	2,436	183
C01E	Kilmarnock WTP	VA0020788	6,091	457
	TOTALS:		614,245	46,068

NOTE Notes:

(1)¹Town of Culpeper WWTP waste load: wasteload allocations (WLAs) based on a design flow capacity of 4.5 million gallons per day (MGD). If plant is not certified to operate at 4.5 MGD design flow capacity by December 31, 2010, the WLAs will decrease to TN = 36,547 lbs/yr; TP = 2,741 lbs/yr, based on a design flow capacity of 3.0 MGD.

 $(2)^2$ Mountain Run STP: waste load wasteload allocations (WLAs) based on a design flow capacity of 2.5 million gallons per day (MGD). If plant is not certified to operate at 2.5 MGD design flow capacity by December 31, 2010, the WLAs will decrease to TN = 18,273 lbs/yr; TP = 1,371 lbs/yr, based on a design flow capacity of 1.5 MGD.

(3)³Fauquier Co. W&SA-Remington STP: waste load wasteload allocations (WLAs) based on a design flow capacity of 2.5 million gallons per day (MGD). If plant is not certified to operate at 2.5 MGD design flow capacity by December 31, 2010, the WLAs will decrease to TN = 24,364 lbs/yr; TP = 1,827 lbs/yr, based on a design flow capacity of 2.0 MGD.

(4)⁴Clevengers Corner STP: <u>waste load wasteload</u> allocations (WLAs) based on a design flow capacity of 0.9 million gallons per day (MGD). If plant is not certified to operate at 0.9 MGD design flow capacity by December 31, 2010, the WLAs will decrease to TN = 7,309 lbs/yr; TP = 548 lbs/yr, based on a design flow capacity of 0.6 MGD.

 $\frac{(5)^5}{}$ Haymount STP: waste load wasteload allocations (WLAs) based on a design flow capacity of 0.96 million gallons per day (MGD). If plant is not certified to operate at 0.96 MGD design flow capacity by December 31, 2010, the WLAs will decrease to TN = 7,066 lbs/yr; TP = 530 lbs/yr, based on a design flow capacity of 0.58 MGD.

9VAC25-720-80. Roanoke River Basin.

A. Total Maximum Daily Load maximum daily loads (TMDLs).

TMDL #	Stream Name	TMDL Title	City/County	WBID	Pollutant	$WLA^{\underline{1}}$	Units
1.	Ash Camp Creek	Total Maximum Daily Load Development for Ash Camp Creek	Charlotte	L39R	Sediment	20.7	T/YR
2.	North Fork Blackwater River	Total Maximum Daily Load (TMDL) Development for the Upper Blackwater River Watershed	Franklin	L08R	Sediment	0	T/YR
3.	North Fork Blackwater River	Total Maximum Daily Load (TMDL) Development for the Upper Blackwater River Watershed	Franklin	L08R	Phosphorus	0	T/YR
4.	Upper Blackwater River	Total Maximum Daily Load (TMDL) Development for the Upper Blackwater River Watershed	Franklin	L08R	Sediment	0.526	T/YR
5.	Flat Creek	Benthic TMDL for Flat Creek Watershed, Virginia	Mecklenburg	L79R	Sediment	76.2	T/YR
6.	Twitty's Twittys Creek	Benthic TMDL for Twittys Creek Watershed, Virginia	Charlotte	L39R	Sediment	20.4	T/YR
7.	Roanoke River	Benthic TMDL Development for the Roanoke River, Virginia	Roanoke, Montgomery, Floyd, Botetout <u>Botetourt</u> , Salem, Roanoke	L04R	Sediment	5,189	T/YR
8.	North Fork Roanoke River	Roanoke River PCB TMDL Development	Montgomery	L02R	tPCB	28.2	MG/YR
9.	South Fork Roanoke River	Roanoke River PCB TMDL Development	Montgomery	L01R	tPCB	230.2	MG/YR
10.	Masons Creek	Roanoke River PCB TMDL Development	Roanoke	L03R, L04R	tPCB	9.1	MG/YR
11.	Peters Creek	Roanoke River PCB TMDL Development	Botetourt, Roanoke	L04R	tPCB	65.4	MG/YR
12.	Tinker Creek	Roanoke River PCB TMDL Development	Botetourt, Roanoke	L05R	tPCB	103.9	MG/YR
13.	Wolf Creek	Roanoke River PCB TMDL Development	Bedford	L21R	tPCB	10.0	MG/YR
14.	UT to Roanoke River	Roanoke River PCB TMDL Development	Bedford	L21R	tPCB	0.5	MG/YR
15.	Roanoke River, (upper)	Roanoke River PCB TMDL Development	Montgomery, Botetourt, Roanoke	L03R, L04R, L12L	tPCB	28,157.7	MG/YR

16.	Goose Creek	Roanoke River PCB TMDL Development	Bedford, Campbell, Pittsylvania	L20R, L21R L22R	tPCB	0.1	MG/YR
17.	Sycamore Creek	Roanoke River PCB TMDL Development	Pittsylvania	L19R	tPCB	1.4	MG/YR
18.	Lynch Creek	Roanoke River PCB TMDL Development	Campbell	L19R	tPCB	0.1	MG/YR
19.	Reed Creek	Roanoke River PCB TMDL Development	Pittsylvania	L19R	tPCB	0.0	MG/YR
20.	X-Trib	Roanoke River PCB TMDL Development	Campbell	L19R	tPCB	0.1	MG/YR
21.	UT to Roanoke River	Roanoke River PCB TMDL Development	Campbell	L19R	tPCB	0.1	MG/YR
22.	Little Otter River	Roanoke River PCB TMDL Development	Bedford, Campbell	L26R	tPCB	0.0	MG/YR
23.	Big Otter River	Roanoke River PCB TMDL Development	Bedford, Campbell	L23R	tPCB	0.0	MG/YR
24.	Straightstone Creek	Roanoke River PCB TMDL Development	Pittsylvania	L30R	tPCB	0.0	MG/YR
25.	Seneca Creek	Roanoke River PCB TMDL Development	Campbell	L31R	tPCB	0.0	MG/YR
26.	Whipping Creek	Roanoke River PCB TMDL Development	Campbell	L30R	tPCB	0.0	MG/YR
27.	Falling River	Roanoke River PCB TMDL Development	Appomattox, Campbell	L32R	tPCB	0.0	MG/YR
28.	Childrey Creek	Roanoke River PCB TMDL Development	Halifax	L30R	tPCB	0.0	MG/YR
29.	Catawba Creek	Roanoke River PCB TMDL Development	Halifax	L36R	tPCB	0.0	MG/YR
30.	Turnip Creek	Roanoke River PCB TMDL Development	Charlotte	L36R	tPCB	0.0	MG/YR
31.	Hunting Creek	Roanoke River PCB TMDL Development	Halifax	L38R	tPCB	0.0	MG/YR
32.	Cub Creek	Roanoke River PCB TMDL Development	Appomattox, Charlotte	L37R	tPCB	0.0	MG/YR
33.	Black Walnut Creek	Roanoke River PCB TMDL Development	Halifax	L38R	tPCB	0.8	MG/YR
34.	Roanoke Creek	Roanoke River PCB TMDL Development	Charlotte	L39R	tPCB	0.0	MG/YR
35.	Difficult Creek	Roanoke River PCB TMDL Development	Halifax	L41R	tPCB	0.0	MG/YR
36.	Roanoke River	Roanoke River PCB TMDL Development	Appomattox, Campbell, Charlotte, Pittsylvania, Halifax	L19R	tPCB	1,931.8	MG/YR

<u>37.</u>	Winn Creek	Bacterial TMDL Development for the Banister River and Winn Creek Watersheds	Halifax	<u>L71</u>	<u>E. coli</u>	5.25E+10	cfu/year
38.	Banister River	Bacterial TMDL Development for the Banister River and Winn Creek Watersheds	<u>Halifax</u>	<u>L71</u>	<u>E. coli</u>	1.17E+12	cfu/year
39.	Banister River	Bacteria TMDL Development for the Banister River, Bearskin Creek, Cherrystone Creek, Polecat Creek, Stinking River, Sandy Creek, and Whitehorn Creek Watersheds	Pittsylvania, Halifax	L65, L66, L67, L68, L69, L70, L71	E. coli	2.78E+10	cfu/year
40.	Polecat Creek	Bacteria TMDL Development for the Banister River, Bearskin Creek, Cherrystone Creek, Polecat Creek, Stinking River, Sandy Creek, and Whitehorn Creek Watersheds	Halifax	<u>L71</u>	<u>E. coli</u>	8.40E+10	cfu/year
41.	Bearskin Creek	Bacteria TMDL Development for the Banister River, Bearskin Creek, Cherrystone Creek, Polecat Creek, Stinking River, Sandy Creek, and Whitehorn Creek Watersheds	<u>Pittsylvania</u>	<u>L65</u>	<u>E. coli</u>	9.18E+10	cfu/year
42.	Stinking River	Bacteria TMDL Development for the Banister River, Bearskin Creek, Cherrystone Creek, Polecat Creek, Stinking River, Sandy Creek, and Whitehorn Creek Watersheds	<u>Pittsylvania</u>	<u>L69</u>	E. coli	1.50E+11	cfu/year
43.	Banister River	Bacteria TMDL Development for the Banister River, Bearskin Creek, Cherrystone Creek, Polecat Creek, Stinking River, Sandy Creek, and Whitehorn Creek Watersheds	<u>Pittsylvania</u>	<u>L65</u>	<u>E. coli</u>	1.52E+11	cfu/year

44.	Sandy Creek	Bacteria TMDL Development for the Banister River, Bearskin Creek, Cherrystone Creek, Polecat Creek, Stinking River, Sandy Creek, and Whitehorn Creek Watersheds	<u>Pittsylvania</u>	<u>L70</u>	E. coli	3.94E+11	cfu/year
45.	Whitehorn Creek	Bacteria TMDL Development for the Banister River, Bearskin Creek, Cherrystone Creek, Polecat Creek, Stinking River, Sandy Creek, and Whitehorn Creek Watersheds	<u>Pittsylvania</u>	<u>L68</u>	E. coli	3.06E+12	cfu/year
<u>46.</u>	Cherrystone Creek	Bacteria TMDL Development for the Banister River, Bearskin Creek, Cherrystone Creek, Polecat Creek, Stinking River, Sandy Creek, and Whitehorn Creek Watersheds	<u>Pittsylvania</u>	<u>L66</u>	E. coli	5.86E+12	cfu/year
<u>47.</u>	Beaverdam Creek, lower	Bacteria TMDL for Beaverdam Creek	Bedford	<u>L07</u>	E. coli	1.39E+10	cfu/year
48.	Big Otter River	Fecal Coliform TMDL for Sheep Creek, Elk Creek, Machine Creek, Little Otter River, and Lower Big Otter River	Campbell, Bedford	L23, L24, L25, L26, L27, L28, L29	Fecal coliform	1.00E+11	cfu/year
49.	Big Otter River and Elk Creek	Fecal Coliform TMDL for Sheep Creek, Elk Creek, Machine Creek, Little Otter River, and Lower Big Otter River	Bedford	<u>L.25</u>	Fecal coliform	1.19E+12	cfu/year
<u>50.</u>	Big Otter River and Falling Creek	Fecal Coliform TMDL for Sheep Creek, Elk Creek, Machine Creek, Little Otter River, and Lower Big Otter River	Bedford	<u>L27</u>	Fecal coliform	1.00E+11	cfu/year
<u>51.</u>	Big Otter River and Sheep Creek	Fecal Coliform TMDL for Sheep Creek, Elk Creek, Machine Creek, Little Otter River, and Lower Big Otter River	<u>Bedford</u>	<u>L23</u>	Fecal coliform	1.00E+11	cfu/year
<u>52.</u>	Machine Creek	Fecal Coliform TMDL for Sheep Creek, Elk Creek, Machine Creek, Little Otter River, and	<u>Bedford</u>	<u>L26</u>	Fecal coliform	1.00E+11	cfu/year

		Lower Big Otter River					
<u>53.</u>	Little Otter River	Fecal Coliform TMDL for Sheep Creek, Elk Creek, Machine Creek, Little Otter River, and Lower Big Otter River	Bedford	<u>L26</u>	Fecal coliform	5.65E+12	cfu/year
<u>54.</u>	Birch Creek	Bacteria TMDL for Birch Creek Watershed	<u>Halifax</u>	<u>L63</u>	E. coli	<u>0</u>	cfu/year
<u>55.</u>	Byrds Branch ²	Bacteria TMDL Development for the Dan River, Blackberry Creek, Byrds Branch, Double Creek, Fall Creek, Leatherwood Creek, Marrowbone Creek, North Fork Mayo River, South Fork Mayo River, Smith River, Sandy Creek, and Sandy River Watersheds	<u>Halifax</u>	<u>L62</u>	E. coli	5.22E+09	<u>cfu/year</u>
<u>56.</u>	Sandy Creek ²	Bacteria TMDL Development for the Dan River, Blackberry Creek, Byrds Branch, Double Creek, Fall Creek, Leatherwood Creek, Marrowbone Creek, North Fork Mayo River, South Fork Mayo River, Smith River, Sandy Creek, and Sandy River Watersheds	<u>Pittsylvania</u>	<u>L59</u>	E. coli	5.22E+09	cfu/year
<u>57.</u>	Blackberry Creek ²	Bacteria TMDL Development for the Dan River, Blackberry Creek, Byrds Branch, Double Creek, Fall Creek, Leatherwood Creek, Marrowbone Creek, North Fork Mayo River, South Fork Mayo River, Smith River, Sandy Creek, and Sandy River Watersheds	<u>Henry</u>	<u>L52</u>	E. coli	6.72E+10	<u>cfu/year</u>
<u>58.</u>	Double Creek ²	Bacteria TMDL Development for the Dan River, Blackberry Creek, Byrds Branch, Double Creek, Fall Creek, Leatherwood Creek, Marrowbone Creek, North Fork Mayo River, South Fork Mayo River,	<u>Pittsylvania</u>	<u>L62</u>	E. coli	7.56E+10	cfu/year

		Smith River, Sandy Creek, and Sandy					
<u>59.</u>	Fall Creek ²	River Watersheds Bacteria TMDL Development for the Dan River, Blackberry Creek, Byrds Branch, Double Creek, Fall Creek, Leatherwood Creek, Marrowbone Creek, North Fork Mayo River, South Fork Mayo River, Smith River, Sandy Creek, and Sandy River Watersheds	Pittsylvania, Danville	<u>L61</u>	E. coli	9.06E+10	cfu/year
<u>60.</u>	Sandy River ²	Bacteria TMDL Development for the Dan River, Blackberry Creek, Byrds Branch, Double Creek, Fall Creek, Leatherwood Creek, Marrowbone Creek, North Fork Mayo River, South Fork Mayo River, Smith River, Sandy Creek, and Sandy River Watersheds	<u>Pittsylvania</u>	<u>L58</u>	E. coli	1.08E+11	cfu/year
<u>61.</u>	Marrowbone Creek ²	Bacteria TMDL Development for the Dan River, Blackberry Creek, Byrds Branch, Double Creek, Fall Creek, Leatherwood Creek, Marrowbone Creek, North Fork Mayo River, South Fork Mayo River, Smith River, Sandy Creek, and Sandy River Watersheds	<u>Henry</u>	<u>L55</u>	<u>E. coli</u>	1.21E+11	cfu/year
<u>62.</u>	North Mayo River ²	Bacteria TMDL Development for the Dan River, Blackberry Creek, Byrds Branch, Double Creek, Fall Creek, Leatherwood Creek, Marrowbone Creek, North Fork Mayo River, South Fork Mayo River, Smith River, Sandy Creek, and Sandy River Watersheds	Patrick, Henry	<u>L46,</u> <u>L47</u>	<u>E. coli</u>	2.44E+11	cfu/year
<u>63.</u>	<u>Leatherwood</u> <u>Creek²</u>	Bacteria TMDL Development for the Dan River, Blackberry	<u>Henry</u>	<u>L56</u>	<u>E. coli</u>	3.49E+11	<u>cfu/year</u>

		Creek, Byrds Branch, Double Creek, Fall Creek, Leatherwood Creek, Marrowbone Creek, North Fork Mayo River, South Fork Mayo River, Smith River, Sandy Creek, and Sandy River Watersheds					
<u>64.</u>	South Mayo River ²	Bacteria TMDL Development for the Dan River, Blackberry Creek, Byrds Branch, Double Creek, Fall Creek, Leatherwood Creek, Marrowbone Creek, North Fork Mayo River, South Fork Mayo River, Smith River, Sandy Creek, and Sandy River Watersheds	<u>Patrick</u>	<u>L43,</u> <u>L44,</u> <u>L45</u>	E. coli	5.11E+11	cfu/year
<u>65.</u>	Smith River ²	Bacteria TMDL Development for the Dan River, Blackberry Creek, Byrds Branch, Double Creek, Fall Creek, Leatherwood Creek, Marrowbone Creek, North Fork Mayo River, South Fork Mayo River, Smith River, Sandy Creek, and Sandy River Watersheds	Franklin, Henry, Martinsville	<u>L52,</u> <u>L53</u>	<u>E. coli</u>	8.94E+11	cfu/year
<u>66.</u>	Dan River ²	Bacteria TMDL Development for the Dan River, Blackberry Creek, Byrds Branch, Double Creek, Fall Creek, Leatherwood Creek, Marrowbone Creek, North Fork Mayo River, South Fork Mayo River, Smith River, Sandy Creek, and Sandy River Watersheds	Patrick, Martinsville, Danville, Halifax, Henry, Pittsylvania	L42, L43, L44, L45, L46, L47, L48, L50, L51, L52, L53, L54, L55, L56, L57, L58, L59, L60, L61, L62, L63, L64,	<u>E. coli</u>	1.76E+13	cfu/year

				<u>L73</u>			
<u>67.</u>	Smith River ²	Bacteria TMDL Development for the Dan River, Blackberry Creek, Byrds Branch, Double Creek, Fall Creek, Leatherwood Creek, Marrowbone Creek, North Fork Mayo River, South Fork Mayo River, Smith River, Sandy Creek, and Sandy River Watersheds	Patrick, Henry, Martinsville, Franklin	L50, L51, L52, L53, L54, L55, L56	E. coli	1.04E+14	cfu/year
<u>68.</u>	Falling River	Bacteria TMDL for Falling River Watershed	Campbell. Appomattox	L32, J33, J34, J35	E. coli	9.05E+11	cfu/year
<u>69.</u>	Flat Creek	Bacteria TMDL for Flat Creek	Mecklenburg	<u>L79</u>	<u>E. coli</u>	3.48E+12	<u>cfu/year</u>
<u>70.</u>	Gills Creek	Total Maximum Daily Load for Fecal Coliform for Gills Creek	<u>Franklin</u>	<u>L11</u>	Fecal coliform	2.01E+12	cfu/year
<u>71.</u>	Great Creek	Bacteria TMDL for Great Creek	Mecklenburg	<u>L80</u>	<u>E. coli</u>	3.52E+09	<u>cfu/year</u>
<u>72.</u>	Lower Blackwater River and tributaries	Total Maximum Daily Load of Fecal Coliform for the Lower Blackwater River	<u>Franklin</u>	L08, L09, L10	Fecal coliform	1.81E+11	<u>cfu/year</u>
<u>73.</u>	Maggodee Creek and Mollie Branch	Fecal Coliform TMDL Development for Maggodee Creek	<u>Franklin</u>	<u>L09</u>	Fecal coliform	8.28E+10	cfu/year
<u>74.</u>	Middle Blackwater River, Little Creek, and Teels Creek	Fecal Coliform TMDL Development for Middle Blackwater River	<u>Franklin</u>	<u>L08</u>	Fecal coliform	9.55E+10	cfu/year
<u>75.</u>	North Fork Blackwater River	Fecal Coliform TMDL Development for North Fork of the Blackwater River	<u>Franklin</u>	<u>L08</u>	Fecal coliform	<u>0</u>	cfu/year
<u>76.</u>	Old Womans Creek	Bacteria Total Maximum Daily Load Development for Pigg River, Snow Creek, Story Creek, and Old Womans Creek	<u>Pittsylvania</u>	<u>L13</u>	E. coli	7.00E+10	cfu/year
77.	Upper Pigg River	Bacteria Total Maximum Daily Load Development for Pigg River, Snow Creek, Story Creek, and Old Womans Creek	<u>Franklin</u>	<u>L14</u>	E. coli	4.83E+11	cfu/year

<u>78.</u>	Story Creek	Bacteria Total Maximum Daily Load Development for Pigg River, Snow Creek, Story Creek, and Old Womans Creek	<u>Franklin</u>	<u>L14</u>	E. coli	6.99E+11	cfu/year
<u>79.</u>	Snow Creek	Bacteria Total Maximum Daily Load Development for Pigg River, Snow Creek, Story Creek, and Old Womans Creek	Franklin, Henry, Pittsylvania	<u>L17</u>	E. coli	8.60E+11	cfu/year
80.	Pigg River - Leesville Lake	Bacteria Total Maximum Daily Load Development for Pigg River, Snow Creek, Story Creek, and Old Womans Creek	Pittsylvania, Franklin	L14, L15, L16, L17, L18	E. coli	3.51E+12	cfu/year
81.	South Fork Blackwater River, lower and tributaries	Fecal Coliform TMDL Development for South Fork of the Blackwater River	Franklin	<u>L08</u>	Fecal coliform	2.80E+09	cfu/year
<u>82.</u>	South Mayo River	Bacteria TMDL for South Mayo River	<u>Patrick</u>	<u>L43,</u> <u>L44,</u> <u>L45</u>	<u>E. coli</u>	1.04E+12	<u>cfu/year</u>
83.	Unnamed tributary to Buffalo Creek	Bacteria TMDLs for the Cub Creek, Turnip Creek, Buffalo Creek, Buffalo Creek (UT), and Staunton River Watersheds	Charlotte	<u>L40</u>	E. coli	1.65E+08	cfu/year
84.	Buffalo Creek	Bacteria TMDLs for the Cub Creek, Turnip Creek, Buffalo Creek, Buffalo Creek (UT), and Staunton River Watersheds	<u>Charlotte</u>	<u>L40</u>	E. coli	2.06E+09	cfu/year
<u>85.</u>	Turnip Creek	Bacteria TMDLs for the Cub Creek, Turnip Creek, Buffalo Creek, Buffalo Creek (UT), and Staunton River Watersheds	Charlotte	<u>L36</u>	E. coli	1.30E+10	cfu/year
86.	Cub Creek	Bacteria TMDLs for the Cub Creek, Turnip Creek, Buffalo Creek, Buffalo Creek (UT), and Staunton River Watersheds	Charlotte, Appomattox	<u>L37</u>	E. coli	1.43E+11	cfu/year
87.	Staunton (Roanoke) River	Bacteria TMDLs for the Cub Creek, Turnip Creek, Buffalo Creek, Buffalo Creek (UT), and Staunton River Watersheds	Charlotte, Bedford, Halifax, Campbell, Franklin, Pittsylvania	L07. L08. L09. L10. L11. L12.	E. coli	2.34E+13	cfu/year

				L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L25, L26, L27, L28, L29, L30, L31, L32, L33, L34, L35, L31, L32, L33, L34, L35, L31, L32, L33, L34, L35, L31, L32, L33, L34, L35, L31, L32, L33, L34, L35, L31, L32, L33, L34, L35, L31, L32, L33, L34, L35, L31, L32, L33, L34, L35, L36, L37, L38, L39, L31, L31, L32, L33, L34, L35, L36, L37, L38, L39, L31, L32, L33, L34, L35, L36, L37, L38, L39, L31, L32, L33, L34, L35, L36, L37, L38, L39, L31, L32, L33, L34, L35, L36, L37, L38, L39, L30, L31, L31, L32, L33, L34, L35, L36, L37, L38, L39, L30, L31, L32, L32, L33, L34, L35, L36, L37, L38, L39, L30, L31, L32, L33, L34, L35, L36, L37, L38, L39, L30, L31, L32, L32, L33, L34, L35, L36, L37, L38, L38, L39, L30, L31, L32, L32, L33, L34, L35, L36, L37, L38, L39, L40,			
88.	Lick Run	Fecal Coliform Total Maximum Daily Load Development for Glade Creek, Tinker Creek, Carvin Creek, Laymantown Creek and Lick Run	Roanoke City	<u>L05</u>	E. coli	7.17E+10	cfu/year
<u>89.</u>	Glade Creek	Fecal Coliform Total Maximum Daily Load Development for Glade Creek, Tinker Creek, Carvin Creek, Laymantown Creek and Lick Run	Botetourt	<u>L05</u>	E. coli	4.00E+11	cfu/year
90.	<u>Laymantown</u> <u>Creek</u>	Fecal Coliform Total Maximum Daily Load Development for Glade Creek, Tinker Creek, Carvin Creek, Laymantown Creek and Lick Run	Botetourt	<u>L05</u>	E. coli	4.36E+11	cfu/year
91.	Tinker Creek	Fecal Coliform Total Maximum Daily Load Development for Glade Creek, Tinker Creek, Carvin Creek, Laymantown Creek and Lick Run	Roanoke, Roanoke City, Botetourt	<u>L05</u>	E. coli	5.07E+12	cfu/year

92.	Carvin Creek	Fecal Coliform Total Maximum Daily Load Development for Glade Creek, Tinker Creek, Carvin Creek, Laymantown Creek and Lick Run	Botetourt	<u>L05</u>	E. coli	5.24E+12	cfu/year
<u>93.</u>	Upper Blackwater River	Fecal Coliform TMDL Development for Upper Blackwater River	<u>Franklin</u>	<u>L08</u>	Fecal coliform	<u>0</u>	cfu/year
<u>94.</u>	Wilson Creek	Bacteria TMDLs for Wilson Creek, Ore Branch and Roanoke River Watersheds	Montgomery	<u>L02</u>	E. coli	6.65E+09	cfu/year
<u>95.</u>	Ore Branch	Bacteria TMDLs for Wilson Creek, Ore Branch and Roanoke River Watersheds	Roanoke City	<u>L04</u>	E. coli	2.17E+10	cfu/year
96.	Roanoke River	Bacteria TMDLs for Wilson Creek, Ore Branch and Roanoke River Watersheds	Roanoke, Roanoke City, Salem, Montgomery, Botetourt	L01, L02, L03, L04, L05, L06	E. coli	1.10E+14	cfu/year

B. Non-TMDL waste load wasteload allocations.

Water Body	Permit No.	Facility Name	Outfall No.	Receiving Stream	River Mile	Parameter Description	WLA	Units WLA
VAW- L04R	VA0072389	Oak Ridge Mobile Home Park	001	Falling Creek UT	0.32	BOD ₅	0.85	KG/D
		Roanoke City				BOD ₅	1173	KG/D
VAW- L04R	VA0025020	Regional Water Pollution Control	001	Roanoke River	201.81	TKN, APR-SEP	318	KG/D
		Plant				TKN, OCT-MAR	636	KG/D
						BOD ₅	1173	KG/D
			001	Roanoke River	201.81	TKN, APR-SEP	416	KG/D
						TKN, OCT-MAR	832	KG/D
						BOD ₅	1173	KG/D
			001	Roanoke River	201.81	TKN, APR-SEP	469	KG/D
						TKN, OCT-MAR	939	KG/D
VAW-	VA0077895	Roanoke Moose	001	Mason Creek	7.79	BOD ₅ , JUN-SEP	0.24	KG/D
L04R	V AUU / / 893	Lodge	001	Mason Creek	7.79	TKN, JUN-SEP	0.09	KG/D

Notes:

The total WLA can be increased prior to modification provided that DEQ tracks these changes for bacteria TMDLs where the permit is consistent with water quality standards for bacteria.

²WLAs from the Dan River TMDL report represent the WLA for the watershed, which may include North Carolina waters in addition to Virginia waters. Virginia permits will be issued in accordance with the Virginia water quality standard.

VAW- L07R	VA0020842	Bedford County School Board- Stewartsville Elementary School	001	Nat Branch, UT	0.59	BOD ₅	0.5	KG/D
VAW- L14R	VA0029254	Ferrum Water and Sewage Auth Ferrum Sewage Treatment Plant	001	Storey Creek	9.78	BOD ₅	14.2	KG/D
VAW- L14R	VA0085952	Rocky Mount Town Sewage Treatment Plant	001	Pigg River	52	BOD ₅	133	KG/D
VAW- L14R	VA0076015	Ronile Incorporated	001	Pigg River	57.24	BOD ₅	14.8	KG/D
VAW- L21R	VA0063738	Bedford County School Board - Staunton River High School	001	Shoulder Run, UT	0.95	BOD ₅	1.8	KG/D
VAW- L21R	VA0020869	Bedford County School Board - Thaxton Elementary School	001	Wolf Creek, UT	0.35	BOD ₅	0.31	KG/D
VAW- L22R	VA0023515	Blue Ridge Regional Jail Auth. - Moneta Adult Detention Facility STP	001	Mattox Creek, UT	3.76	BOD ₅	1.66	KG/D
VAW- L25R	VA0020851	Bedford County School Board - Otter River Elementary School	001	Big Otter River, UT	1.15	BOD ₅	0.4	KG/D
VAW- L26R	VA0022390	Bedford City - Sewage Treatment Plant	001	Little Otter River	14.36	BOD ₅	52.8	KG/D
VAW- L26R	VA0020818	Bedford County School Board - Body Camp Elementary	001	Wells Creek, UT	2.22	BOD ₅	0.4	KG/D
VAW- L27R	VA0020826	Bedford County School Board - New London Academy	001	Buffalo Creek, UT	0.67	BOD ₅	0.39	KG/D
VAC- L29R	VA0031194	Briarwood Village Mobile Home Park STP	001	Smith Branch, UT	2.82	BOD ₅	1.3	KG/D
VAC- L35R	VA0023965	Campbell Co Util & Serv Auth Rustburg	001	Mollys Creek	17.81	BOD ₅	8.13	KG/D
VAC- L39R	VA0084433	Drakes Branch WWTP	001	Twitty's Twittys Creek	6.04	BOD ₅	6.4	KG/D

VAC- L39R	VA0024058	Keysville WWTP	001	Ash Camp Creek	7.63	CBOD ₅ , MAY-NOV	32.1	KG/D
LSAK						TKN, MAY-NOV	7.57	KG/D
AC- L39R	VA0050822	Westpoint Stevens Inc Drakes Branch	001	Twittys Creek	7.22	BOD ₅	6.31	KG/D
VAW- L43R	VA0022985	Stuart Town - Sewage Treatment Plant	001	South Mayo River	30.78	BOD_5	63.5	KG/D
VAW- L54R	VA0069345	Henry Co Public Service Auth Lower Smith River STP	001	Smith River	19.4	BOD ₅	257	KG/D
VAW- L54R	VA0025305	Martinsville City Sewage Treatment Plant	001	Smith River	22.69	BOD ₅	681	KG/D
VAC-	VA0060593	Danville City -	001	Dan River	53.32	BOD ₅ , JUN-OCT	1907	KG/D
L60R	V A0000393	Northside	001	Dan Kivei	33.32	TKN, JUN-OCT	1817	KG/D
VAC-	VA0020524	Town of Chatham	001	Cherrystone	2.49	CBOD ₅	64.8	KG/D
L66R	V A0020324	STP	001	Creek	2.49	TKN	38.9	KG/D
VAC- L75L	VA0020168	Clarksville WWTP	001	Blue Creek/John H. Kerr Reservoir	0.1	BOD ₅	59.5	KG/D
VAC-		Chase City		Little		CBOD ₅ , MAY-NOV	29.5	KG/D
L77R	VA0076881	Regional WWTP	001	Bluestone Creek	13.67	TKN, MAY-NOV	9.5	KG/D
VAC-						CBOD ₅ , MAY-NOV	17.7	KG/D
L78R	VA0026247	Boydton WWTP	001	Coleman Creek	3.79	TKN, MAY-NOV	4.1	KG/D
VAC- L79R	VA0069337	South Hill WWTP	001	Flat Creek	8.95	CBOD ₅ , APR-NOV	60.6	KG/D

9VAC25-720-90. Tennessee-Big Sandy River Basin.

A. Total maximum daily load loads (TMDLs).

TMDL #	Stream Name	TMDL Title	City/County	WBID	Pollutant	$WLA^{\underline{1}}$	Units
1.	Guest River	Guest River Total Maximum Load Report	Wise	P11R	Sediment	317.92	LB/YR
2.	Cedar Creek	Total Maximum Daily Load (TMDL) Development for Cedar Creek, Hall/Byers Creek and Hutton Creek	Washington	O05R	Sediment	1,789.93	LB/YR
3.	Hall/Byers Creek	Total Maximum Daily Load (TMDL) Development for Cedar Creek, Hall/Byers Creek and Hutton Creek	Washington	O05R	Sediment	57,533.49	LB/YR

4.	Hutton Creek	Total Maximum Daily Load (TMDL) Development for Cedar Creek, Hall/Byers Creek and Hutton Creek	Washington	O05R	Sediment	91.32	LB/YR
5.	Clinch River	Total Maximum Daily Load Development for the Upper Clinch River Watershed	Tazewell	P01R	Sediment	206,636	LB/YR
6.	Lewis Creek	Total Maximum Daily Load Development for the Lewis Creek Watershed	Russell	P04R	Sediment	40,008	LB/YR
7.	Black Creek	General Standard Total Maximum Daily Load Development for Black Creek, Wise County, Virginia	Wise	P17R	Manganese	2,127	KG/YR
8.	Dumps Creek	General Standard Total Maximum Daily Load Development for Dumps Creek, Russell County, Virginia	Russell	P08R	Total Dissolved Solids <u>dissolved</u> solids	1,631,575	KG/YR
9.	Dumps Creek	General Standard Total Maximum Daily Load Development for Dumps Creek, Russell County, Virginia	Russell	P08R	Total Suspended Solids suspended solids	316,523	KG/YR
10.	Beaver Creek	Total Maximum Daily Load Development for the Beaver Creek Watershed	Washington	O07R	Sediment	784,036	LB/YR
11.	Stock Creek	General Standard (Benthic) Total Maximum Daily Load Development for Stock Creek	Scott	P13R	Sediment	0	T/YR
12.	Lick Creek	Lick Creek TMDLs for Benthic Impairments-Dickenson, Russell and Wise Counties	Dickenson, Russell, Wise	P10R	Sediment	63	T/YR
13.	Cigarette Hollow	Lick Creek TMDLs for Benthic Impairments-Dickenson, Russell and Wise Counties	Dickenson, Russell, Wise	P10R	Sediment	0.4	T/YR
14.	Laurel Branch	Lick Creek TMDLs for Benthic Impairments-Dickenson, Russell and Wise Counties	Dickenson, Russell, Wise	P10R	Sediment	3.9	T/YR
15.	Right Fork	Lick Creek TMDLs for Benthic Impairments-Dickenson, Russell and Wise Counties	Dickenson, Russell, Wise	P10R	Sediment	1.3	T/YR
16.	Middle Fork Holston River	Bacteria and Benthic Total Maximum Daily Load Development for Middle Fork Holston River	Washington, Smyth	O05R	Sediment	100.4	T/YR
17.	Wolf Creek	Bacteria and Benthic Total Maximum Daily Load Development for Wolf Creek	Washington	O06R	Sediment	301.6	T/YR

		Margury Total Mayimum Doil-	Scott,				
18.	North Fork Holston River	Mercury Total Maximum Daily Load Development for the North Fork Holston River, Virginia	Washington, Smyth, Bland, Tazewell, Russell	O10R	Total Mercury <u>mercury</u>	11.9	G/YR
19.	Laurel Creek	Bacteria and Sediment TMDL Development Lower Clinch River Watershed, VA	Russell, Tazewell	P05R	Sediment	0.26	T/YR
20.	Thompson Creek	Bacteria and Sediment TMDL Development Lower Clinch River Watershed, VA	Russell	P07R	Sediment	0.22	T/YR
21.	Beaver Creek	Total Maximum Daily Load Development for the Beaver Creek Watershed	Washington, Bristol	<u>007</u>	E. coli	1.23E+12	cfu/year
<u>22.</u>	Black Creek and tributaries	General Standard TMDL Development for Black Creek	Wise	<u>P17</u>	<u>Alkalinity</u>	<u>0</u>	kg/year
<u>23.</u>	Callahan Creek	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Callahan Creek	Wise	<u>P17</u>	<u>E. coli</u>	1.74E+09	cfu/year
<u>24.</u>	Hutton Creek and tributaries	Fecal Coliform TMDL Development for Cedar, Hall, Byers, and Hutton Creeks	Washington	<u>O05</u>	Fecal coliform	<u>0</u>	cfu/year
<u>25.</u>	Cedar Creek	Fecal Coliform TMDL Development for Cedar, Hall, Byers, and Hutton Creeks	Washington	<u>005</u>	Fecal coliform	1.55E+10	cfu/year
<u>26.</u>	Hall/Byers Creek	Fecal Coliform TMDL Development for Cedar, Hall, Byers, and Hutton Creeks	Washington	<u>005</u>	Fecal coliform	7.85E+10	cfu/year
<u>27.</u>	Stock Creek	Bacteria TMDL Development Clinch River and Cove Creek Watershed	Scott	<u>P13</u>	E. coli	2.15E+12	cfu/year
<u>28.</u>	Blackwater Creek	Bacteria TMDL Development Clinch River and Cove Creek Watershed	<u>Lee</u>	<u>P16</u>	E. coli	1.13E+13	cfu/year
<u>29.</u>	North Fork Clinch River	Bacteria TMDL Development Clinch River and Cove Creek Watershed	Scott	P13, P15	E. coli	1.90E+13	cfu/year
<u>30.</u>	Moll Creek	Bacteria TMDL Development Clinch River and Cove Creek Watershed	Russell, Scott	<u>P14</u>	E. coli	2.29E+13	cfu/year
<u>31.</u>	Clinch River	Bacteria TMDL Development Clinch River and Cove Creek Watershed	Russell, Scott	<u>P13, P14</u>	E. coli	2.92E+14	cfu/year
<u>32.</u>	Clinch River and Plum Creek (near Tazewell)	E. coli Total Maximum Daily Loads in the Upper Clinch River Watershed	<u>Tazewell</u>	<u>P01, P02</u>	<u>E. coli</u>	2.09E+13	cfu/year

		T	1			1	
33.	Clinch River, Coal Creek, and Middle Creek (near Richlands)	E. coli Total Maximum Daily Loads in the Upper Clinch River Watershed	<u>Tazewell</u>	<u>P01, P02,</u> <u>P03</u>	<u>E. coli</u>	6.29E+13	cfu/year
<u>34.</u>	Garden Creek	Total Maximum Daily Load Development for Garden Creek	Buchanan	<u>Q04</u>	E. coli	3.86E+11	cfu/year
<u>35.</u>	Crab Orchard Creek	Bacteria TMDLs for Sepulcher Creek, Toms Creek and Crab Orchard Branch	Wise	<u>P11</u>	E. coli	<u>0</u>	cfu/year
<u>36.</u>	Little Toms Creek	Bacteria TMDLs for Sepulcher Creek, Toms Creek and Crab Orchard Branch	Wise	<u>P11</u>	E. coli	1.04E+10	cfu/year
<u>37.</u>	Sepulcher Creek	Bacteria TMDLs for Sepulcher Creek, Toms Creek and Crab Orchard Branch	Wise	<u>P11</u>	E. coli	1.39E+10	cfu/year
<u>38.</u>	Toms Creek	Bacteria TMDLs for Sepulcher Creek, Toms Creek and Crab Orchard Branch	Wise	<u>P11</u>	E. coli	2.61E+10	cfu/year
<u>39.</u>	Indian Creek	Bacteria Total Maximum Daily Load Development for Indian Creek	<u>Tazewell</u>	<u>P02</u>	E. coli	1.75E+10	cfu/year
<u>40.</u>	Knox Creek and Guess Fork	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Knox Creek and Pawpaw Creek	Buchanan	<u>Q03</u>	E. coli	4.53E+10	cfu/year
41.	Slate Creek	E. coli, Phased Benthic, and Phased Total PCB TMDL Development for Levisa Fork, Slate Creek, and Garden Creek	Buchanan	<u>Q07</u>	E. coli	5.29E+11	cfu/year
<u>42.</u>	Levisa Fork	E. coli, Phased Benthic, and Phased Total PCB TMDL Development for Levisa Fork, Slate Creek, and Garden Creek	Buchanan	Q04, Q05, Q06, Q07, Q08	E. coli	7.69E+12	cfu/year
<u>43.</u>	Lick Creek, Laurel Branch, Cigarette Hollow	Bacteria Total Maximum Daily Load Development for Lick Creek	Russell, Dickenson	<u>P10</u>	E. coli	2.42E+11	cfu/year
<u>44.</u>	Little Creek	Fecal Coliform TMDL for Little Creek Watershed	Washington, Bristol	<u>O07</u>	Fecal coliform	8.29E+09	cfu/year
<u>45.</u>	Bear Creek	Bacteria and Sediment TMDL Development Lower Clinch River Watershed	Wise	<u>P11</u>	E. coli	2.31E+12	cfu/year
46.	Clinch River, Little Stoney Creek, Staunton Creek, Fall Creek	Bacteria and Sediment TMDL Development Lower Clinch River Watershed	Russell, Scott	P13, P14	E. coli	3.14E+12	cfu/year

47. Russ	sell	Bacteria and Sediment TMDL					
	<u>ek</u>	Development Lower Clinch River Watershed	Russell, Wise	P09, P10	E. coli	8.38E+12	cfu/year
48. <u>Gues</u>	est River	Bacteria and Sediment TMDL Development Lower Clinch River Watershed	Norton, Wise	<u>P11</u>	E. coli	9.49E+12	cfu/year
49. <u>Ston</u>	ny Creek	Bacteria and Sediment TMDL Development Lower Clinch River Watershed	Scott	<u>P12</u>	E. coli	1.00E+13	cfu/year
	Garden ek, Loop ek	Bacteria TMDL Development for the Middle Clinch River and Tributaries	Russell	<u>P06</u>	E. coli	6.36E+12	cfu/year
51. Swo Cree	ords/Hess ek	Bacteria TMDL Development for the Middle Clinch River and Tributaries	Russell	<u>P04</u>	E. coli	7.04E+12	cfu/year
<u>52.</u> <u>Dum</u> <u>Cree</u>		Bacteria TMDL Development for the Middle Clinch River and <u>Tributaries</u>	Russell	<u>P08</u>	E. coli	9.90E+12	cfu/year
53. Big (Cree Burg Cree	gess	Bacteria TMDL Development for the Middle Clinch River and Tributaries	Russell	<u>P06</u>	<u>E. coli</u>	1.34E+13	cfu/year
54. <u>Lew</u>	vis Creek	Bacteria TMDL Development for the Middle Clinch River and Tributaries	Russell	<u>P04</u>	E. coli	1.53E+13	cfu/year
55. <u>Cline</u>	nch River	Bacteria TMDL Development for the Middle Clinch River and Tributaries	Tazewell, Russell	P01, P02, P03, P04, P05, P06, P07	<u>E. coli</u>	1.64E+13	cfu/year
<u>56.</u> <u>Hols</u> <u>Rive</u>	ddle Fork ston er (VAS- BR-02)	Bacteria and Benthic Total Maximum Daily Load Development for Middle Fork Holston River	<u>Smyth</u>	<u>003</u>	<u>E. coli</u>	2.61E+10	cfu/year
57. Hols	ddle Fork ston er (VAS- BR-01)	Bacteria and Benthic Total Maximum Daily Load Development for Middle Fork Holston River	<u>Smyth</u>	<u>003</u>	<u>E. coli</u>	5.29E+10	cfu/year
	ldle Fork ston er	Bacteria and Benthic Total Maximum Daily Load Development for Middle Fork Holston River	Smyth. Washington	003, 004, 005	<u>E. coli</u>	7.62E+12	cfu/year
	ldle Fork ston er	Bacteria and Benthic Total Maximum Daily Load Development for Middle Fork Holston River	Smyth	<u>O03, O04</u>	E. coli	1.04E+13	cfu/year
	ldle Fork ston er	Bacteria and Benthic Total Maximum Daily Load Development for Middle Fork Holston River	Smyth	003, 004, 005	<u>E. coli</u>	3.56E+13	cfu/year
61. <u>Abra</u> <u>Cree</u>		TMDL Development North Fork Holston River Watershed	Washington	<u>O12</u>	<u>E. coli</u>	6.83E+10	cfu/year

<u>62.</u>	Possum Creek	TMDL Development North Fork Holston River Watershed	Scott	<u>O13</u>	E. coli	2.74E+11	cfu/year
<u>63.</u>	Big Moccasin Creek	TMDL Development North Fork Holston River Watershed	Scott, Russell	<u>014</u>	E. coli	4.43E+11	cfu/year
<u>64.</u>	North Fork Holston River, Upper	TMDL Development North Fork Holston River Watershed	Bland, Washington, Smyth, Tazewell	009, O10, O11, O12	E. coli	1.06E+13	cfu/year
<u>65.</u>	North Fork Holston, lower	TMDL Development North Fork Holston River Watershed	Bland, Washington, Smyth, Tazewell, Scott, Russell	009, 010, 011, 012, 013, 014	E. coli	1.33E+13	cfu/year
<u>66.</u>	<u>Laurel</u> <u>Creek</u>	TMDL Development North Fork Holston River Watershed	<u>Tazewell</u>	<u>O10</u>	<u>Temperature</u>	2.85	J/m ² /s
<u>67.</u>	South Fork Powell River	E. coli and Phased Benthic Total Maximum Daily Load Development for Powell River and Tributaries (N.F. Powell River, S.F. Powell River, Butcher Fork, and Wallen Creek)	Wise	<u>P18</u>	E. coli	1.08E+11	cfu/year
<u>68.</u>	Butcher Fork	E. coli and Phased Benthic Total Maximum Daily Load Development for Powell River and Tributaries (N.F. Powell River, S.F. Powell River, Butcher Fork, and Wallen Creek)	Wise	<u>P18</u>	E. coli	3.08E+11	cfu/year
<u>69.</u>	Wallen Creek	E. coli and Phased Benthic Total Maximum Daily Load Development for Powell River and Tributaries (N.F. Powell River, S.F. Powell River, Butcher Fork, and Wallen Creek)	Lee	<u>P22</u>	E. coli	1.16E+12	cfu/year
<u>70.</u>	North Fork Powell River	E. coli and Phased Benthic Total Maximum Daily Load Development for Powell River and Tributaries (N.F. Powell River, S.F. Powell River, Butcher Fork, and Wallen Creek)	<u>Lee</u>	<u>P20</u>	<u>E. coli</u>	2.17E+12	cfu/year
71.	<u>Upper</u> <u>Powell</u> <u>River</u>	E. coli and Phased Benthic Total Maximum Daily Load Development for Powell River and Tributaries (N.F. Powell River, S.F. Powell River, Butcher Fork, and Wallen Creek)	Wise	<u>P17</u>	<u>E. coli</u>	4.39E+12	cfu/year
<u>72.</u>	Middle Powell River	E. coli and Phased Benthic Total Maximum Daily Load Development for Powell River	Wise, Lee	<u>P17, P18,</u> <u>P19</u>	<u>E. coli</u>	9.65E+12	cfu/year

		and Tributaries (N.F. Powell River, S.F. Powell River, Butcher Fork, and Wallen Creek)					
<u>73.</u>	Lower Powell River	E. coli and Phased Benthic Total Maximum Daily Load Development for Powell River and Tributaries (N.F. Powell River, S.F. Powell River, Butcher Fork, and Wallen Creek)	Wise, Lee	P17, P18, P19, P20, P21	<u>E. coli</u>	1.51E+13	cfu/year
<u>74.</u>	Straight Creek	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Straight Creek	Lee	<u>P20</u>	E. coli	<u>0</u>	cfu/year
<u>75.</u>	Mainstem North Fork Holston River	General Standard (Benthic) Total Maximum Daily Load Development for Upper North Fork Holston River	Bland, Smyth, Tazewell	009, 010, 011	<u>Chloride</u>	<u>862466</u>	kg/year
<u>76.</u>	Wolf Creek	Bacteria and Benthic Total Maximum Daily Load Development for Wolf Creek	Washington	<u>006</u>	E. coli	7.31E+13	cfu/year

Notes:

The total WLA can be increased prior to modification provided that DEQ tracks these changes for bacteria TMDLs where the permit is consistent with water quality standards for bacteria.

B. Non-TMDL wasteload allocations.

Water Body	Permit No.	Facility Name	Receiving Stream	River Mile	Outfall No.	Parameter Description	WLA	Units WLA
VAS-	VA0061913	Pound WWTP	Pound River	33.26	001	CBOD ₅ , JUN-NOV CBOD ₅ , DEC-MAY	28 47	KG/D KG/D
Q13R	VA0001913	Tound ww 11	I dulid Kivei	33.20	001	TKN, JUN-NOV	28	KG/D KG/D
VAS- Q14R	VA0026565	Clintwood WWTP	Cranes Nest River	9.77	001	BOD_5	30	KG/D
VAS- O06R	VA0026531	Wolf Creek Water Reclamation Facility	Wolf Creek	7.26	001	$CBOD_5$	249.8	KG/D
VAS- P01R	VA0026298	Tazewell WWTP	Clinch River	346.26	001	CBOD ₅ , JUN-NOV	76	KG/D
VAS- P03R	VA0021199	Richlands Regional WWTF	Clinch River	317.45	001	BOD₅, JUN-NOV	273	KG/D
VAS- P06R	VA0020745	Lebanon WWTP	Big Cedar Creek	5.22	001	BOD_5	91	KG/D
VAS- P11R	VA0077828	Coeburn Norton Wise Regional WWTP	Guest River	7.56	001	CBOD ₅ , JUN-NOV CBOD ₅ , DEC-MAY	303 379	KG/D KG/D

VAS- P15R	VA0029564	Duffield Industrial Park WWTP	North Fork Clinch River	21.02	001	BOD_5	36	KG/D
VAS- P17R	VA0020940	Big Stone Gap Regional WWTP	Powell River	177.38	001	CBOD ₅ , JUN-NOV	110	KG/D

9VAC25-720-100. Chowan River -- Dismal Swamp River Basin.

TMDL#	Stream Name	TMDL Title	City/County	WBID	Pollutant	WLA^{1}	Units
1.	Unnamed Tributary tributary to Hurricane Branch	Benthic TMDL for Hurricane Branch Unnamed Tributary, Virginia	Nottoway	K16R	Sediment	60.9	T/YR
2.	Spring Branch	Total Maximum Daily Load Development for Spring Branch	Sussex	K32R	Phosphorus	145.82	KG/YR
3.	Albemarle Canal/North Landing River	Total Maximum Daily Load Development for Albemarle Canal/North Landing River, A Total Phosphorus TMDL Due to Low Dissolved Oxygen Impairment	Chesapeake, Virginia Beach	K41R	Phosphorus	989.96	KG/YR
4.	Northwest River Watershed	Total Maximum Daily Load Development for the Northwest River Watershed, A Total Phosphorus TMDL Due to Low Dissolved Oxygen Impairment	Chesapeake, Virginia Beach	K40R	Phosphorus	3,262.86	KG/YR
<u>5.</u>	Assamoosick Swamp and tributaries	E. coli Total Maximum Daily Load Development for Assamoosick Swamp & Tributaries	Sussex	<u>K29</u>	E. coli	6.27E+12	cfu/year
<u>6.</u>	Coppahaunk Swamp, UT	E. coli Total Maximum Daily Load Development for Blackwater River & Tributaries	Sussex	<u>K32</u>	E. coli	1.87E+09	cfu/year
<u>7.</u>	Otterdam Swamp	E. coli Total Maximum Daily Load Development for Blackwater River & Tributaries	Surry	<u>K32</u>	E. coli	1.96E+10	cfu/year
<u>8.</u>	Blackwater Swamp, Warwick Swamp, Second Swamp	E. coli Total Maximum Daily Load Development for Blackwater River & Tributaries	Prince George, Petersburg	<u>K31</u>	E. coli	1.27E+12	cfu/year
<u>9.</u>	Blackwater River	E. coli Total Maximum Daily Load Development for Blackwater River & Tributaries	Sussex, Prince George, Surry	<u>K31,</u> <u>K32</u>	E. coli	1.67E+13	cfu/year

<u>10.</u>	Milldam Creek	Development of Bacterial TMDLs for the Virginia Beach Coastal Area	Virginia Beach	<u>K41</u>	E. coli	<u>0</u>	cfu/year
11.	West Neck Creek, middle	Development of Bacterial TMDLs for the Virginia Beach Coastal Area	Virginia Beach	<u>K41</u>	E. coli	<u>0</u>	cfu/year
<u>12.</u>	Nawney Creek	Development of Bacterial TMDLs for the Virginia Beach Coastal Area	Virginia Beach	<u>K42</u>	Enterococci	<u>0</u>	cfu/year
<u>13.</u>	West Neck Creek, upper	Development of Bacterial TMDLs for the Virginia Beach Coastal Area	Virginia Beach	<u>K41</u>	Enterococci	1.88E+13	cfu/year
<u>14.</u>	London Bridge Creek and Canal #2	Development of Bacterial TMDLs for the Virginia Beach Coastal Area	Virginia Beach	<u>K41,</u> <u>C08</u>	Enterococci	2.17E+13	cfu/year
<u>15.</u>	Beaver Pond Creek	Development of Bacterial TMDLs for the Chowan Study Area	<u>Dinwiddie</u>	<u>K16</u>	E. coli	<u>0</u>	cfu/year
<u>16.</u>	Mill Swamp	Development of Bacterial TMDLs for the Chowan Study Area	Surry	<u>K34</u>	E. coli	<u>0</u>	cfu/year
<u>17.</u>	Nottoway River	Development of Bacterial TMDLs for the Chowan Study Area	Lunenburg	<u>K14</u>	E. coli	<u>0</u>	cfu/year
<u>18.</u>	Raccoon Creek	Development of Bacterial TMDLs for the Chowan Study Area	<u>Sussex</u>	<u>K25</u>	E. coli	<u>0</u>	cfu/year
<u>19.</u>	Rattlesnake Swamp	Development of Bacterial TMDLs for the Chowan Study Area	Isle of Wight, Surry	<u>K34</u>	E. coli	<u>0</u>	cfu/year
<u>20.</u>	Cypress Swamp	Development of Bacterial TMDLs for the Chowan Study Area	Surry	<u>K32</u>	E. coli	2.26E+11	cfu/year
<u>21.</u>	Little Nottoway River	Development of Bacterial TMDLs for the Chowan Study Area	Nottoway	<u>K15</u>	E. coli	6.54E+11	cfu/year
<u>22.</u>	Big Hounds Creek	Development of Bacterial TMDLs for the Chowan Study Area	Lunenburg	<u>K14</u>	E. coli	6.96E+11	cfu/year
<u>23.</u>	Broad Branch	Bacteria TMDL for the Flat Rock Creek Watershed and Broad Branch	Lunenburg	<u>K03</u>	E. coli	5.14E+08	cfu/day
<u>24.</u>	Flat Rock Creek	Bacteria TMDL for the Flat Rock Creek Watershed and Broad Branch	Lunenburg	<u>K03</u>	E. coli	2.64E+09	cfu/day
<u>25.</u>	Flat Rock Creek, upper	Bacteria TMDL for the Flat Rock Creek Watershed and Broad Branch	Lunenburg	<u>K03</u>	E. coli	1.32E+10	cfu/day

		T	1	1	1	1	1
<u>26.</u>	Fontaine Creek	E. coli Total Maximum Daily Load Development for Fontaine Creek	Brunswick, Greensville	<u>K10,</u> <u>K11,</u> <u>K12</u>	E. coli	3.77E+12	<u>cfu/year</u>
<u>27.</u>	Unnamed tributary to Nebletts Mill Run	E. coli Total Maximum Daily Load Development for Unnamed Tributary to Nebletts Mill Run and Hatcher Run	Sussex	<u>K23</u>	E. coli	1.22E+10	cfu/year
28.	Hatcher Run	E. coli Total Maximum Daily Load Development for Unnamed Tributary to Nebletts Mill Run and Hatcher Run	Dinwiddie	<u>K23</u>	E. coli	1.31E+11	cfu/year
<u>29.</u>	North Meherrin River	Fecal Bacteria Total Maximum Daily Load Development for Meherrin River and Tributaries	Lunenburg	<u>K02</u>	E. coli	3.25E+12	cfu/year
<u>30.</u>	Meherrin River including Briery Branch, Genito Creek, and Great Creek	Fecal Bacteria Total Maximum Daily Load Development for Meherrin River and Tributaries	Mecklenburg, Brunswick, Lunenburg	K01, K02, K03, K04, K05, K06, K07, K08	E. coli	9.90E+12	cfu/year
<u>31.</u>	Roses Creek	Bacteria TMDL for Roses Creek Watershed	<u>Brunswick</u>	<u>K07</u>	E. coli	4.35E+12	cfu/year
32.	Flat Swamp	Bacteria Total Maximum Daily Load Development for Three Creek, Flat Swamp, Tarrara Creek, Mill Swamp, and Darden Mill Run	Southampton	<u>K13</u>	E. coli	<u>o</u>	cfu/year
33.	Tarrara Creek	Bacteria Total Maximum Daily Load Development for Three Creek, Flat Swamp, Tarrara Creek, Mill Swamp, and Darden Mill Run	Southampton	<u>K13</u>	E. coli	<u>0</u>	cfu/year
<u>34.</u>	Three Creek (K26R-03)	Bacteria Total Maximum Daily Load Development for Three Creek, Flat Swamp, Tarrara Creek, Mill Swamp, and Darden Mill Run	Greensville	<u>K26</u>	E. coli	5.00E+09	cfu/year
<u>35.</u>	Mill Swamp	Bacteria Total Maximum Daily Load Development for Three Creek, Flat Swamp, Tarrara Creek, Mill Swamp, and Darden Mill Run	Southampton	<u>K28</u>	E. coli	1.93E+11	cfu/year
<u>36.</u>	Darden Mill Swamp	Bacteria Total Maximum Daily Load Development for Three Creek, Flat	Southampton	<u>K30</u>	E. coli	4.10E+11	cfu/year

		Swamp, Tarrara Creek, Mill Swamp, and Darden Mill Run					
<u>37.</u>	Three Creek (K26R-02)	Bacteria Total Maximum Daily Load Development for Three Creek, Flat Swamp, Tarrara Creek, Mill Swamp, and Darden Mill Run	<u>Greensville</u>	<u>K26</u>	E. coli	9.53E+12	cfu/year
<u>38.</u>	Three Creek (K27R-02)	Bacteria Total Maximum Daily Load Development for Three Creek, Flat Swamp, Tarrara Creek, Mill Swamp, and Darden Mill Run	Sussex, Southampton, Greensville	<u>K26,</u> <u>K27</u>	E. coli	1.43E+13	cfu/year

9VAC25-720-110. Chesapeake Bay -- Small Coastal -- Eastern Shore River Basin.

A. Total Maximum Daily Load maximum daily loads (TMDLs).

TMDL#	Stream Name	TMDL Title	City/County	WBID	Pollutant	WLA ¹	Units
1.	Parker Creek	Benthic Total Maximum Daily Load (TMDL) Development for Parker Creek, Virginia	Accomack	D03E	Total Phosphorus <u>phosphorus</u>	664.2	LB/YR
2.	Pettit Branch	Benthic Total Maximum Daily Load (TMDL) Development for the Pettit Branch Watershed	Accomack	D02R	Total Phosphorus <u>phosphorus</u>	0.01	LB/D
3.	Mill Creek	Total Maximum Daily Load for Dissolved Oxygen in Mill Creek, Northampton County, Virginia	Northampton	D06R	Organic Carbon <u>carbon</u> as TC	30.53	LB/D
4.	Mill Creek	Total Maximum Daily Load for Dissolved Oxygen in Mill Creek, Northampton County, Virginia	Northampton	D06R	Nutrients as TN	10.07	LB/D
5.	Folly Creek	Total Maximum Daily Loads of Pathogens for Folly Creek in Accomack County, Virginia	Accomack	D03E	Total Nitrogen nitrogen	2.6	LBS/D
6.	Gargathy Creek	Total Maximum Daily Loads of Dissolved Oxygen and Pathogens for Gargathy Creek	Accomack	D03E	Total Nitrogen nitrogen	1.9	LBS/D

Notes:

¹The total WLA can be increased prior to modification provided that DEQ tracks these changes for bacteria TMDLs where the permit is consistent with water quality standards for bacteria.

		(Upper, Lower, and Riverine Portions) in Accomack County, Virginia					
7.	Assawoman Creek	Bacteria Total Maximum Daily Load (TMDL) Development for the Assawoman Creek Watershed	Accomack	<u>D02</u>	Fecal coliform	1.12E+09	MPN/day
<u>8.</u>	Back River	Total Maximum Daily Loads of Bacteria for Back River	Hampton, Poquoson, York	<u>C07</u>	<u>Fecal</u> <u>coliform</u>	3.87E+14	<u>counts/</u> <u>year</u>
<u>9.</u>	Barlow Creek (#191)	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Barlow and Jacobus Creeks	Northampton	<u>C14</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
<u>10.</u>	Jacobus Creek (#9D)	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Barlow and Jacobus Creeks	Northampton	<u>C14</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
11.	Jackson Creek (84A)	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Broad and Jackson Creeks	<u>Middlesex</u>	<u>C03</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
12.	Jackson Creek (84B)	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Broad and Jackson Creeks	<u>Middlesex</u>	<u>C03</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
<u>13.</u>	Browns Bay	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Browns Bay and Monday Creek	Gloucester	<u>C06</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
<u>14.</u>	Monday Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas	Gloucester	<u>C06</u>	<u>Fecal</u> <u>coliform</u>	<u>N/A²</u>	MPN/day

		Listed Due to Bacterial Contamination - Browns Bay and Monday Creek					
<u>15.</u>	Cherrystone Inlet, Kings Creek	Total Maximium Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Cherrystone Inlet	Northampton	<u>C15,</u> <u>C16</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
<u>16.</u>	<u>Chesconessex</u> <u>Creek</u>	Total Maximium Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Chesconessex Creek	<u>Accomack</u>	<u>C11</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>17.</u>	Cockrell Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Cockrell Creek	Northumberland	<u>C01</u>	<u>Fecal</u> coliform	5.98E+10	MPN/day
<u>18.</u>	<u>Craddock</u> <u>Creek (A)</u>	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination	<u>Accomack</u>	<u>C13</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>19.</u>	Bagwell Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Deep, Hunting and Bagwell Creeks	<u>Accomack</u>	<u>C10</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>20.</u>	Deep Creek (#138A)	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Deep, Hunting and Bagwell Creeks	<u>Accomack</u>	<u>C10</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
21.	Hunting Creek (#138C)	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Deep, Hunting and Bagwell Creeks	<u>Accomack</u>	<u>C10</u>	<u>Fecal</u> coliform	N/A ²	MPN/day

22.	Dividing Creek (22A)	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Dividing Creek	Northumberland	<u>C01</u>	Fecal coliform	<u>N/A²</u>	MPN/day
23.	Prentice Creek (22C)	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Dividing Creek	Northumberland	<u>C01</u>	Fecal coliform	N/A ²	MPN/day
<u>24.</u>	Prentice Creek (22D)	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Dividing Creek	Northumberland	<u>C01</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>25.</u>	Unnamed cove of Dividing Creek (22B)	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Dividing Creek	Northumberland	<u>C01</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
26.	East River	Total Maximum Daily Load (TMDL) Report For Shellfish Waters Impaired by Bacteria - East River and Put in Creek	<u>Mathews</u>	<u>C04</u>	Fecal coliform	N/A ²	MPN/day
27.	Put In Creek	Total Maximum Daily Load (TMDL) Report For Shellfish Waters Impaired by Bacteria - East River and Put in Creek	<u>Mathews</u>	<u>C04</u>	Fecal coliform	N/A ²	MPN/day
<u>28.</u>	Finney Creek, upper	Total Maximum Daily Loads of Pathogens for Finney Creek	Accomack	<u>D03</u>	<u>Enterococci</u>	7.97E+07	cfu/day
<u>29.</u>	Rattrap Creek	Total Maximum Daily Loads of Pathogens for Finney Creek	Accomack	<u>D03</u>	Enterococci	2.08E+08	cfu/day
<u>30.</u>	Folly Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Folly Creek	Accomack	<u>D03</u>	Fecal coliform	N/A ²	MPN/day

31.	Gargathy Creek, riverine	Total Maximum Daily Loads of DO and Pathogens for Gargathy Creek (-Upper, -Lower, and Riverine Portions)	<u>Accomack</u>	<u>D03</u>	E. coli	1.80E+08	cfu/day
32.	Balls Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Great Wicomico River	Northumberland	<u>C01</u>	Fecal coliform	N/A ²	MPN/day
33.	Great Wicomico River	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Great Wicomico River	Northumberland	<u>C01</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>34.</u>	Tipers Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Great Wicomico River	Northumberland	<u>C01</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
<u>35.</u>	Warehouse Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Great Wicomico River	Northumberland	<u>C01,</u> <u>A34</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
<u>36.</u>	Whays Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Great Wicomico River	Northumberland	<u>C01</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
<u>37.</u>	Guilford Creek (#176B)	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Messongo and Guilford Creeks	<u>Accomack</u>	<u>C10</u>	<u>Fecal</u> coliform	<u>None²</u>	MPN/day

<u>38.</u>	Young Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Messongo and Guilford Creeks	<u>Accomack</u>	<u>C10</u>	<u>Fecal</u> coliform	None ²	<u>MPN/day</u>
<u>39.</u>	Holdens Creek, upper and lower	Fecal Coliform Total Maximum Daily Load Development for Holdens Creek, Sandy Bottom Branch, and Unnamed Tributary to Sandy Bottom Branch	Accomack	<u>C10</u>	<u>Fecal</u> coliform	<u>N/A²</u>	counts/day
<u>40.</u>	Sandy Bottom Branch and UT to Sandy Bottom Branch	Fecal Coliform Total Maximum Daily Load Development for Holdens Creek, Sandy Bottom Branch, and Unnamed Tributary to Sandy Bottom Branch	<u>Accomack</u>	<u>C10</u>	<u>E. coli</u>	4.80E+09	cfu/day
<u>41.</u>	<u>Davis Creek</u>	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Chesapeake Bay: Horn Harbor, Doctors and Davis Creek Watersheds	<u>Mathews</u>	<u>C04</u>	<u>Fecal</u> coliform	<u>N/A²</u>	<u>MPN/day</u>
<u>42.</u>	<u>Doctors Creek</u>	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Chesapeake Bay: Horn Harbor, Doctors and Davis Creek Watersheds	<u>Mathews</u>	<u>C04</u>	<u>Fecal</u> coliform	<u>N/A²</u>	<u>MPN/day</u>
<u>43.</u>	<u>Horn Harbor</u>	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Chesapeake Bay: Horn Harbor, Doctors and Davis Creek Watersheds	<u>Mathews</u>	<u>C04</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day

		•					
<u>44.</u>	Hungars Creek	Bacteria Total Maximum Daily Load (TMDL) Development for the Hungars Creek Watershed	<u>Northampton</u>	<u>C14</u>	Fecal coliform	5.44E+08	MPN/day
<u>45.</u>	Indian Creek	Indian, Tabbs, Dymer, and Antipoison Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condmenation Areas Listed Due to Bacteria Pollution	Northumberland	<u>C01</u>	Enterococci	6.76E+08	cfu/day
<u>46.</u>	<u>Davenport</u> <u>Creek</u>	Indian, Tabbs, Dymer, and Antipoison Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condmenation Areas Listed Due to Bacteria Pollution	<u>Lancaster</u>	<u>C01</u>	Fecal coliform	1.38E+08	MPN/day
<u>47.</u>	Long Creek	Indian, Tabbs, Dymer, and Antipoison Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condmenation Areas Listed Due to Bacteria Pollution	<u>Lancaster</u>	<u>C01</u>	Fecal coliform	3.17E+08	MPN/day
<u>48.</u>	Lees Cove	Indian, Tabbs, Dymer, and Antipoison Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condmenation Areas Listed Due to Bacteria Pollution	<u>Lancaster</u>	<u>C01</u>	Fecal coliform	2.51E+08	MPN/day
49.	Georges Cove	Indian, Tabbs, Dymer, and Antipoison Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condmenation Areas Listed Due to Bacteria Pollution	<u>Lancaster</u>	<u>C01</u>	Fecal coliform	7.01E+08	MPN/day
<u>50.</u>	<u>Hunts Cove</u>	Indian, Tabbs, Dymer, and Antipoison Creeks Total Maximum Daily Load (TMDL) Report for Shellfish	<u>Lancaster</u>	<u>C01</u>	<u>Fecal</u> coliform	1.05E+09	MPN/day

		Condmenation Areas Listed Due to Bacteria Pollution					
51.	Ashley Cove	Indian, Tabbs, Dymer, and Antipoison Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condmenation Areas Listed Due to Bacteria Pollution	<u>Lancaster</u>	<u>C01</u>	Fecal coliform	1.17E+09	MPN/day
<u>52.</u>	Bells Creek	Indian, Tabbs, Dymer, and Antipoison Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condmenation Areas Listed Due to Bacteria Pollution	Northumberland	<u>C01</u>	Fecal coliform	1.25E+09	<u>MPN/day</u>
<u>53.</u>	Henrys Creek	Indian, Tabbs, Dymer, and Antipoison Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condmenation Areas Listed Due to Bacteria Pollution	Northumberland	<u>C01</u>	Fecal coliform	2.13E+09	<u>MPN/day</u>
<u>54.</u>	Barnes Creek	Indian, Tabbs, Dymer, and Antipoison Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condmenation Areas Listed Due to Bacteria Pollution	Northumberland	<u>C01</u>	<u>Fecal</u> coliform	3.65E+09	MPN/day
<u>55.</u>	Tabbs Creek	Indian, Tabbs, Dymer, and Antipoison Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condmenation Areas Listed Due to Bacteria Pollution	<u>Lancaster</u>	<u>C01</u>	Fecal coliform	5.36E+09	MPN/day
<u>56.</u>	Dymer Creek	Indian, Tabbs, Dymer, and Antipoison Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condmenation Areas Listed Due to Bacteria Pollution	<u>Lancaster</u>	<u>C01</u>	<u>Fecal</u> <u>coliform</u>	8.25E+09	<u>MPN/day</u>

<u>57.</u>	Antipoison Creek	Indian, Tabbs, Dymer, and Antipoison Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condmenation Areas Listed Due to Bacteria Pollution	<u>Lancaster</u>	<u>C01</u>	<u>Fecal</u> coliform	8.60E+09	MPN/day
<u>58.</u>	Indian Creek (including Arthur and Pitmans Creeks)	Indian, Tabbs, Dymer, and Antipoison Creeks Total Maximum Daily Load (TMDL) Report for Shellfish Condmenation Areas Listed Due to Bacteria Pollution	Northumberland	<u>C01</u>	<u>Fecal</u> coliform	3.82E+09	MPN/day
<u>59.</u>	Little Mosquito Creek	Bacteria TMDL Development for the Little Mosquito Creek Watershed	<u>Accomack</u>	<u>D01</u>	Fecal coliform	5.15E+08	MPN/day
<u>60.</u>	Broad Bay, Long Creek, and Linkhorn Bay	Lynnhaven Bay, Broad Bay and Linkhorn Bay Watersheds Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacteria Contamination	Virginia Beach	<u>C08</u>	<u>Fecal</u> coliform	9.35E+10	cfu/year
<u>61</u>	<u>Lynnhaven</u> <u>River</u>	Lynnhaven Bay, Broad Bay and Linkhorn Bay Watersheds Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacteria Contamination	Virginia Beach	<u>C08</u>	Fecal coliform	9.01E+11	cfu/year
<u>62.</u>	Mattawoman Creek	TMDL Report for Chesapeake Bay Shellfish Waters: Mattawoman Creek Bacterial Impairment	Northampton	<u>C14</u>	Fecal coliform	1.15E+09	MPN/day
<u>63.</u>	<u>Messongo</u> <u>Creek</u>	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Messongo and Guilford Creeks	<u>Accomack</u>	<u>C10</u>	<u>Fecal</u> <u>coliform</u>	None ²	<u>MPN/day</u>

<u>64.</u>	Messongo Creek	Bacteria Total Maximum Daily Load (TMDL) Development for the Messongo Creek Watershed	<u>Accomack</u>	<u>C10</u>	<u>Fecal</u> coliform	1.00E+08	MPN/day
<u>65.</u>	Billups Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Gwynn's Island and Milford Haven Watersheds	<u>Mathews</u>	<u>C04</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>66.</u>	Edwards Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Gwynn's Island and Milford Haven Watersheds	<u>Mathews</u>	<u>C04</u>	<u>Fecal</u> coliform	<u>N/A²</u>	<u>MPN/day</u>
<u>67.</u>	Morris Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Gwynn's Island and Milford Haven Watersheds	<u>Mathews</u>	<u>C04</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>68.</u>	Queens Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Gwynn's Island and Milford Haven Watersheds	<u>Mathews</u>	<u>C04</u>	<u>Fecal</u> <u>coliform</u>	<u>N/A²</u>	MPN/day
<u>69.</u>	Stutts Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Gwynn's Island and Milford Haven Watersheds	<u>Mathews</u>	<u>C04</u>	<u>Fecal</u> <u>coliform</u>	<u>N/A²</u>	MPN/day

<u>70.</u>	Ball Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Chesapeake Bay: Mill Creek to Dividing Creek	Northumberland	<u>C01</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
71.	<u>Cloverdale</u> <u>Creek</u>	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Chesapeake Bay: Mill Creek to Dividing Creek	<u>Northumberland</u>	<u>C01</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>72.</u>	Mill Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Chesapeake Bay: Mill Creek to Dividing Creek	Northumberland	<u>C01</u>	Fecal coliform	<u>N/A²</u>	MPN/day
73.	McLean Gut	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Nandua and Curratuck Creeks	<u>Accomack</u>	<u>C13</u>	<u>Fecal</u> coliform	<u>N/A²</u>	<u>MPN/day</u>
<u>74.</u>	Nandua Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Nandua and Curratuck Creeks	<u>Accomack</u>	<u>C13</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>75.</u>	Church Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Nassawadox Creek Watershed	<u>Northampton</u>	<u>C13</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day

<u>76.</u>	Holly Grove Cove	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Nassawadox Creek Watershed	<u>Northampton</u>	<u>C13</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>77.</u>	<u>Nassawadox</u> <u>Creek, upper</u>	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Nassawadox Creek Watershed	<u>Northampton</u>	<u>C13</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>78.</u>	Warehouse Creek, upper	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Nassawadox Creek Watershed	<u>Northampton</u>	<u>C13</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>79.</u>	Westerhouse Creek - Part A	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Nassawadox Creek Watershed	<u>Northampton</u>	<u>C13,</u> <u>C14</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>80.</u>	Westerhouse Creek - Part B	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Nassawaddox Creek Watershed	Northampton	<u>C13,</u> <u>C14</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
81.	Back Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - North River	Gloucester	<u>C04</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>82.</u>	<u>Blackwater</u> <u>Creek</u>	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - North River	<u>Mathews</u>	<u>C04</u>	<u>Fecal</u> <u>coliform</u>	<u>N/A²</u>	MPN/day

F							
83.	Elmington Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - North River	Gloucester	<u>C04</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>84.</u>	Greenmansion Cove	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - North River	<u>Mathews</u>	<u>C04</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>85.</u>	North River	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - North River	<u>Mathews</u>	<u>C04</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>86.</u>	Occohannock Creek, upper	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Occohannock Creek	<u>Accomack</u>	<u>C13</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>87.</u>	Old Plantation Creek, upper VDH-DSS condemnation	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Old Plantation and Elliots Creeks	<u>Northampton</u>	<u>C16</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
88.	Onancock Creek, south branch	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Onancock Creek	<u>Accomack</u>	<u>C11</u>	Enterococci	<u>N/A²</u>	cfu/day
<u>89.</u>	Onancock Creek, upper	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Onancock Creek	<u>Accomack</u>	<u>C11</u>	<u>Enterococci</u>	<u>N/A²</u>	<u>cfu/day</u>

90.	Onancock Creek, north branch	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Onancock Creek	<u>Accomack</u>	<u>C11</u>	<u>Enterococci</u>	9.94E+08	<u>cfu/day</u>
91.	Cedar Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Onancock Creek	<u>Accomack</u>	<u>C11</u>	Fecal coliform	<u>N/A²</u>	MPN/day
<u>92.</u>	Finneys Creek, upper	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Onancock Creek	<u>Accomack</u>	<u>C11</u>	<u>Enterococci</u>	<u>N/A²</u>	<u>cfu/day</u>
<u>93.</u>	Onancock Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Onancock Creek	<u>Accomack</u>	<u>C11</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>94.</u>	Onancock Creek, central branch	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Onancock Creek	<u>Accomack</u>	<u>C11</u>	<u>Enterococci</u>	<u>N/A²</u>	<u>cfu/day</u>
<u>95.</u>	Chesapeake Bay, unnamed tributary (Big Fleets Pond)	Owens Pond, Little Taskmakers Creek, and Un-named Tributary to Chesapeake Bay (Big Fleets Pond) Total Maximum Daily Load Report for Shellfish Condemnation Impaired Due to Bacteria Contamination	Northumberland	<u>C01</u>	Fecal coliform	1.37E+08	MPN/day
<u>96.</u>	Little Taskmakers Creeks	Owens Pond, Little Taskmakers Creek, and Un-named Tributary to Chesapeake Bay (Big Fleets Pond) Total Maximum Daily Load Report for Shellfish Condemnation	Northumberland	<u>C01</u>	Fecal coliform	3.67E+08	MPN/day

		Impaired Due to					
		Bacteria Contamination					
<u>97.</u>	Owens Pond	Owens Pond, Little Taskmakers Creek, and Un-named Tributary to Chesapeake Bay (Big Fleets Pond) Total Maximum Daily Load Report for Shellfish Condemnation Impaired Due to Bacteria Contamination	Northumberland	<u>C01</u>	Fecal coliform	1.56E+09	MPN/day
<u>98.</u>	Oyster Harbor	TMDL Report for Chesapeake Bay Shellfish Waters: Oyster Harbor Bacterial Impairment	Northampton	D05, D06	Fecal coliform	4.28E+08	MPN/day
<u>99.</u>	Parker Creek	Bacteria Total Maximum Daily Load Development for the Parker Creek Watershed	<u>Accomack</u>	<u>D03</u>	Fecal coliform	1.59E+10	MPN/day
<u>100.</u>	Pettit Branch	Total Maximum Daily Load of Bacteria for Pettit Branch	<u>Accomack</u>	<u>D02</u>	<u>E. coli</u>	<u>0</u>	cfu/day
101.	Piankatank River, Cobbs Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Piankatank River, Lower	<u>Mathews</u>	<u>C03,</u> <u>C04</u>	Fecal coliform	N/A ²	MPN/day
102.	<u>Piankatank</u> River, Healy <u>Creek</u>	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Piankatank River, Lower	<u>Middlesex</u>	<u>C03</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>103.</u>	Piankatank River, Wilton Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Piankatank River, Lower	<u>Middlesex</u>	<u>C03</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
<u>104.</u>	Harper Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to	Gloucester	<u>C03</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day

		Bacterial Contamination - Piankatank River, Upper					
105.	Piankatank River	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Piankatank River, Upper	King and Queen, Gloucester, Middlesex, Essex	C02, C03	Fecal coliform	N/A ²	MPN/day
<u>106.</u>	Pitts Creek, unnamed tributary	Total Maximum Daily Load of Pathogens for the Unnamed Tributary to Pitts Creek	<u>Accomack</u>	<u>C09</u>	E. coli	6.40E+07	cfu/day
<u>107.</u>	Pitts Creek, unnamed tributary	Total Maximum Daily Load on Dissolved Oxygen In Unnamed Tributary to Pitts Creek	<u>Accomack</u>	<u>C09</u>	<u>Total</u> nitrogen	<u>0</u>	<u>lbs/day</u>
<u>108.</u>	Pitts Creek, unnamed tributary	Total Maximum Daily Load on Dissolved Oxygen In Unnamed Tributary to Pitts Creek	<u>Accomack</u>	<u>C09</u>	<u>Total</u> <u>phosphorus</u>	<u>0</u>	<u>lbs/day</u>
<u>109.</u>	Pocomoke Sound and Pocomoke River including Holden Creek, Bulbeggar Creek, and Pitts Creek ³	Total Maximum Daily Loads of Fecal Coliform for the Restricted Shellfish Harvesting/Growing Areas of the Pocomoke River in the Lower Pocomoke River Basin and Pocomoke Sound Basin	<u>Accomack</u>	<u>C09.</u> <u>C10</u>	Fecal coliform	1.37E+09	MPN/day
<u>110.</u>	Back Creek	Total Maximum Daily Loads of Bacteria for Poquoson River and Back Creek	<u>York</u>	<u>C07</u>	Fecal coliform	1.41E+13	counts/ year
111.	Poquoson River	Total Maximum Daily Loads of Bacteria for Poquoson River and Back Creek	Poquoson, York	<u>C07</u>	Fecal coliform	1.12E+14	counts/ year
112.	Free School Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Severn River	Gloucester	<u>C06</u>	Fecal coliform	N/A ²	MPN/day

113.	Heywood Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Severn River	Gloucester	<u>C06</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
114.	Northwest Branch Severn River	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Severn River	Gloucester	<u>C06</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
115.	Thorntons Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Severn River	Gloucester	<u>C06</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>116.</u>	<u>Vaughans</u> <u>Creek</u>	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Severn River	Gloucester	<u>C06</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>117.</u>	Greenbackville Harbor	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Chincoteague Bay	<u>Accomack</u>	<u>D01</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>118.</u>	Swan Gut Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Chincoteague Bay	Accomack	<u>D01</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
119.	The Gulf, upper	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - The Gulf	Northampton	<u>C14</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>120.</u>	Pungoteague Creek (Warehouse Prong and Bull Run Creek)	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Pungoteague Creek	<u>Accomack</u>	<u>C12</u>	<u>Fecal</u> <u>coliform</u>	<u>N/A²</u>	MPN/day

121.	Taylor Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Pungoteague Creek	<u>Accomack</u>	<u>C12,</u> <u>C13</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
122.	Fox Mill Run	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Ware River	Gloucester	<u>C05</u>	Fecal coliform	<u>N/A²</u>	MPN/day
123.	Ware River	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Ware River	Gloucester	<u>C05</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
124.	Wilson Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Ware River	Gloucester	<u>C05,</u> <u>C06</u>	<u>Fecal</u> coliform	N/A ²	MPN/day
125.	Cockrell Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Condemnation Areas Listed Due to Bacteria Contamination - Cockrell Creek	<u>Northumberland</u>	<u>C01</u>	<u>Fecal</u> coliform	1.49E+11	<u>cfu/day</u>

Notes:

Small Coastal and Chesapeake Bay
TABLE B1 - CURRENT STREAM SEGMENT CLASSIFICATION

Segment No.	Name	Current State Class
7-12A	Pocomoke Sound	E <u>.</u> L <u>.</u>
7-12B	Messongo Creek	E <u>.</u> L <u>.</u>
7-12C	Beasley Bay	E <u>.</u> L <u>.</u>
7-12D	Chesconessex Creek	E <u>.</u> L <u>.</u>
7-13	Onancock Creek	W <u>.</u> Q <u>.</u>
7-14	Pungoteague	W <u>.</u> Q <u>.</u>

The total WLA can be increased prior to modification provided that DEQ tracks these changes for bacteria TMDLs where the permit is consistent with water quality standards for bacteria.

²There were no point source dischargers in the modeled TMDL area.

³This WLA represents only the Virginia portion of the watershed.

B. Stream segment classifications, effluent limitations including water quality based effluent limitations, and waste load allocations.

7-12E	Nandua Creek	E <u>.</u> L <u>.</u>
7-15	Occohannock Creek	W <u>.</u> Q <u>.</u>
7-12F	Nassawadox Creek	E <u>.</u> L <u>.</u>
7-12G	Hungars Creek	E <u>.</u> L <u>.</u>
7-12H	Cherrystone Inlet	E <u>.</u> L <u>.</u>
7-12I	South Bay	E <u>.</u> L <u>.</u>
7-12J	Tangier Island	
7-11A	Chincoteague	E <u>.</u> L <u>.</u>
7-11B	Hog Bogue	E <u>.</u> L <u>.</u>
7-11C	Metomkim Bay	E <u>.</u> L <u>.</u>
7-11D	Machipongo River	E <u>.</u> L <u>.</u>
7-11E	South Ocean	E <u>.</u> L <u>.</u>

Small Coastal and Chesapeake Bay TABLE B2 - EASTERN SHORE WASTELOAD ALLOCATIONS

			ΓERIM WASTELO ALLOCATIONS ⁽⁴		FINA	L WASTELOAD .	ALLOCATIONS	
				(Currer	nt Permit Lir	mits)		
NAME	RECEIVING STREAM OR ESTUARY	BOD ₅ (lb/d)	SUSPENDED SOLIDS (lb/d)	OIL & GREASE (lb/d)	BOD ₅ (lb/d)	SUSPENDED SOLIDS (lb/d)	OIL & GREASE (lb/d)	
Commonwealth of Va. Rest Area	Pitts Cr.	4.3	4.3		4.3	4.3		
Edgewood Park	Bullbegger Cr.	0.80	0.80		0.80	0.80		
Holly Farms	Sandy Bottom Cr.	167 ⁽³⁾ 3	167 ⁽³⁾ 3	10 mg/l		vey/model and deto allocations planned	ermination of final l for the summer of	
Taylor Packing Company	Messongo Cr.	7006 ⁽³⁾ 3	13010 ⁽³⁾ 3			vey/model was run permit anticipated.	previously. No	
No. Accomack E.S.	Messongo Cr.	1.8	1.4		1.8	1.4		
Messick & Wessels Nelsonia	Muddy Cr.	30mg/l ⁽⁴⁾ 4	30mg/I ⁽⁴⁾⁴			steload allocations AT guidance.	may be changed	
Whispering Pines Motel	Deep Cr.	4.8	4.8		4.8	4.8		
Town of Onancock	Onancock Cr.	21	21		21	21		
Messick & Wessels	Onancock Cr.	30mg/l ⁽⁴⁾ 4	30mg/l ^{(4)<u>4</u>}		Interim wa based on g	steload allocations uidance.	may be changed	
So. Accomack E.S.	Pungoteague Cr.	1.8	1.4		1.8	1.4		
A & P Exmore	Nassawadox Cr.	0.38	0.38		0.38	0.38		
Norstrom Coin Laundry	Nassawadox Cr.	60mg/l ⁽⁴⁾ 4 max.	60mg/l ⁽⁴⁾ 4 max.		Interim wasteload allocation may be changed based on BAT guidance.			
NH-Acc. Memorial Hospital	Warehouse Cr.	12.5	12.5		21.5 12.5			

Machipongo E.S. & H.H. Jr. High	Trib. To Oresbus Cr.	5.2	5.2		5.2	5.2	
Town of Cape Charles	Cape Charles Harbor	62.6	62.6		62.6	62.6	
America House	Chesapeake Bay	5	5		5	5	
U.S. Coast Guard Chesapeake Bay	Chesapeake Bay			10/mgl ⁽⁵⁾ 5			10/mgl ⁽⁵⁾ 5
U.S. Government Cape Charles AFB	Magothy Bay	Currently N	No Discharge	l			
Exmore Foods (Process Water)	Trib. To Parting Cr.	200	100				ermination of final I for the summer of
Exmore Foods (Sanitary)	Trib. To Parting Cr.	30mg/l ⁽⁵⁾ 5	30mg/l ⁽⁵⁾ 5		30mg/l ⁽⁵⁾ 5	30mg/l ⁽⁵⁾ 5	
Perdue Foods (process water)	Parker Cr.	May-Oct 275 367 Nov-Apr. 612 797				No substantial chan	eam survey/models ge in permit
Perdue Foods (parking lot)	Parker Cr.	30mg/l ⁽⁵⁾ 5	30mg/l ⁽⁵⁾ 5		30mg/l ⁽⁵⁾ 5	30mg/l ⁽⁵⁾ 5	
Accomack Nursing Home	Parker Cr.	2.7	2.6		2.7	2.6	
U.S. Gov't NASA Wallops Island	Mosquito Cr.	75	75		75	75	
U.S. Gov't NASA Wallops Island	Cat Cr.	1.25	1.25		1.25	1.25	
F & G Laundromat	Chincoteague Channel	10	4.8			steload allocations AT guidance.	may be changed
U.S. Coast Guard	Chincoteague Channel			15mg/l (max.)			15mg/l (max.)
Virginia-Carolina Seafood	Chincoteague Bay	342	264	5.5	342	264	5.5
Reginald Stubbs Seafood Co. (VA0005813)	Assateague Channel		20	95		20	95
Reginald Stubbs Seafood Co. (VA00056421)	Assateague Channel		20	98		20.4 ⁽²⁾²	98
Shreaves	Chincoteague Bay		16 ⁽²⁾ 2	1.4 ⁽²⁾ 2		16 ⁽²⁾²	1.4 ⁽²⁾ 2
Chincoteague Seafood	Chincoteague Bay	342	264	5.5	342	264	5.5

Notes:

¹Water quality data taken from discharge monitoring reports or special studies unless indicated.

²NPDES Permit limits given since the permit is new and discharge monitoring reports not yet available.

³Data from Accomack-Northampton Co. Water Quality Management Plan.

⁴Estimated.

⁵May need a permit -- either company has not responded to SWCB letter or operation has just started up.

⁶No limits -- has an NPDES permit, but is not required to monitor.

TABLE B3 - EXISTING OR POTENTIAL SOURCES OF WATER POLLUTION

Location No.	Name	Receiving Estuary	Stream	Flow (MGD)	CBOD (mgl/#D)	NBOD (mgl/#D)	Total Suspended Solids (mgl/#D)	D.O. (mgl)	FC (MPN/ 100ml)	Treatment/ Operation
1	Comm. Va. Rest Area	Pocomoke Sound	Pitts Cr.	.003	7/0.18		10/0.3	7.5	1	Extended aeration. Sec. Holding pond, CL ₂
2	H.E. Kelley	Pocomoke Sound	Pitts Cr.							Currently no discharges. Out of business
3	Edgewood Park	Pocomoke Sound	Bullbegger Creek	.006(3)3	16/0.8 ⁽²⁾ 2		16/0.8 ⁽²⁾ 2			PRI, CL ₂ . Holding Pond
4	Holly Farms	Pocomoke Sound	Sand Bottom Creek	0.18	6/40		15/100	8.0	100	Aerated Lagoons, CL ₂
5	J.W. Taylor	Messongo Creek	Trib. To Messongo	.001	60/50		150/125	8.0		Aerated Lagoons
6	No. Accomack E.S.	Messongo Creek	Trib. To Messongo	.005	22/0.9		30/1.3	9.0		Sec., Septic Tank, Sand Filter Holding Pond
7	Messick & Wessells- Nelsonia	Beasly Bay	Muddy Creek	.005	125/5.2		100/4.2			Sec., Extended Aeration
8	Willets Laundromat	Beasly Bay	Hunting Creek							Prl., Septic Tank
9	Byrd Food	Beasly Bay								No discharge industry
10	Whispering Pines Motel	Beasly Bay	Deep Creek	.009	25/1.9		30/2.3	6.0		Sec., Extended Aeration Holding Pond, CL ₂
11	Town of Onancock	Onancock Creek	North Fork	.19	2/3.2		3/4.8	7.5	3	Primary, Primary Settling Sludge Digestion, CL ₂
12	Messick & Wessels-Onley	Onancock Creek	Joynes Branch	.005	100/4.2		150/6.3			Sec., Extended Aeration

									Sec., Septic Tank, Grease
13	So. Accomack E.S.	Pungoteague	Trib. To Pungoteague		24/1.8 ⁽²⁾ 2	19/1.4 ⁽²⁾²			Trap, Sand Filter, Holding Pond. No discharge in 4 yrs.
14	Great Atlantic & Pacific Tea Company	Nassawadox	Nassawadox	.001	140/1.2	150/1.3		6.5	Sec., Extended Aeration CL ₂
15	Norstrom Coin Laundry	Nassawadox	Trib. To Nassawadox	.008					Sec., Extended Aeration, permit in process
17	N.HAcc. Memorial Hospital	Nassawadox	Warehouse Creek	.03	25/1.6	35/2.2	6.5	750	Secondary Aerated Lagoon, CL ₂ Holding pond Stab-Lagoon
18	Machipongo E.S. & N.H. Jr. High School	Hungars Creek	Trib. To Oresbus	0.3(4)1	30/5.2 ⁽²⁾ 2	30/5.2(2)2			Sec., Stab- Lagoon, Holding Pond no discharge in 4 yrs.
19	B & B Laundromat	Cherry Stone Cherrystone Inlet	Old Castle Creek						Prl. Septic Tank w/discharger
20	KMC Foods, Inc.	Cherry Stone Cherrystone Inlet							No Discharge industry
21	Herbert West Laundromat	Cherry Stone Cherrystone Inlet	Kings Creek						Prl. Septic Tank w/Discharger
22	Town of Cape Charles	Cape Charles Harbor	Cape Charles Harbor	.165 ⁽²⁾²	290/400 ⁽³⁾ 3	139/192 ⁽³⁾ 3			Raw Sewage, Sewage Treatment to be completed by 1982
23	American House Inn	Chesapeake Bay	Chesapeake Bay		30/5 ⁽²⁾ 2	$30/5^{\frac{(2)}{2}}$			
24	U.S. Coast Guard	Chesapeake Bay	Chesapeake Bay	.001(2)2	30/		5.0 ⁽²⁾²	200 ⁽²⁾ 2	Bilgewater
25	U.S. Gov't Cape Charles AFS	Magothy	Magothy	.001(2)2			5.0 ⁽³⁾ 3		Sec., CL _{2,} Aerated Lagoon, currently no discharge
27	Exmore Frozen Foods	Machipongo	Trib. To Parting Cr.	.56	29/135	18/84	6.5		Grass Bays, Screening
28	Exmore Foods (Domestic)	Machipongo	Trib. To Parting Cr.	.02	5/0.8	9/1.5			Septic Tank, Sand Filter
30	Perdue Foods	Metomkin Bay	Parker Creek	1.7	11/156	15/213	6.5	150	Sec., Aerated Lagoon, Holding Pond,

										CL_2
31	Perdue Foods	Metomkin Bay	Parker Cr.	.01(4)4			15/1.3			
32	Accomack Co. Nursing Home	Metomkin Bay	Parker Cr. North Fork	.011	20/1.8		28/2.6	6.5	100	Sec., Extended Aeration, Holding Pond, CL ₂
33	U.S. Gov't NASA (Wallops Island)	Hog Creek	Cat Creek	.005	30/		30/			Sec., Stab., Pond, Holding Pond, CL ₂
34	Robo Automatic Car	Chincoteague Channel	Little Simoneaton							
35	U.S. Gov't NASA	Chincoteague Channel	Mosquito Creek	.105	10.6/9.3 ⁽³⁾ 3	112/28	2.0/1.8			Sec., Trickling Filter
36	Trail's End Rec. Vehicle Dev.	Chincoteague Channel	Trib to Mosquito Cr.							Septic Tank and Drainfield
37	Coin-Op Laundromat	Chincoteague Channel	Chincoteague Channel							No discharge
38	F & G Laundromat	Chincoteague Channel	Chincoteague Channel	.005						
39	U.S. Coast Guard	Chincoteague Channel	Chincoteague Channel	.001(2)2			30/0.2 ⁽²⁾ 2		200(2)2	Discharge- Bilgewater
40	Phillip Custis	Ramshorn Bay								Spray Irrigation, no Discharge
43	Boggs (Melfa)	Nickowampus Creek								Septic tank waste lagoons, no discharge
44	Blake (Greenbush)	Deep Creek								Septic tank waste lagoon, no discharge
45	Cherrystone Campground	Kings Creek or Cherrystone Inlet								Stab-Lagoon, Holding pond, no discharge
46	Wallops Sanitary Landfill									Solid waste disposal site, no discharge
47	Chincoteague Dumpsite									Solid waste disposal site, no discharge
48	Bob Town Sanitary Landfill									Solid waste disposal site, no discharge
49	Northampton Sanitary Landfill									Solid waste site, no discharge
52	Dorsey's Seafood Market	Chincoteague								Oysters ⁽⁵⁾ 5
54	Va-Carolina Seafood Company, Inc.	Hog-Bogue					1152 ⁽²⁾² Clams 68 ⁽²⁾²			Surf Clams, Oysters, Scallops

	T	1				Ovetare	 	
						Oysters		
						7.0 ²⁾² Scallops		
55	Chincoteague Island Oyster Farm	Chincoteague						(Oyster-Boat Operation (grows oysters & clams from larvae) (5)5
	Reginald Stubbs Seafood Company	Assateague Channel		.002 ⁽⁴⁾⁴	4.2	2.8		Oyster
58	Shreaves Bros.	Chincoteague		.002(4)4	2.07	8.0		Oyster
60	Chincoteague Seafood Co.	Chincoteague		.063 ⁽⁴⁾ 4	972	79.9		Surf-Clam
61	Ralph E. Watson Oyster Co.	Chincoteague		.003 ⁽⁴⁾ 4	57	53		Oyster
62	McCready Bros. Inc.	Chincoteague						Oyster, no discharge
63	Wm. C. Bunting	Chincoteague		.001(4)4	12	4.8		Oyster
64	Carpenters Seafood	Chincoteague		.001(4)4	4.1	2.1		Oyster
64a	Burtons Seafood, Inc.	Chincoteague		.006 ⁽⁴⁾ 4	10.3	.35		Oyster shell stock deal no discharge
69	Jones Bros. Seafood	Chincoteague	Sheepshead Cr.					Oyster & Clams
70	W.E. Jones Seafood	Chincoteague	Sheepshead Creek			46.4 ⁽²⁾²		Oyster & Clams
71	Conner & McGee Seafood	Chincoteague	Sheepshead Creek					Oyster & Clams ⁽⁵⁾ 5
72	Hills Oyster Farm	Chincoteague						Oyster & Clams ⁽⁵⁾ 5
73	Thomas E. Reed Seafood	Chincoteague	Deep Hole Creek					Oyster & Clams ⁽⁵⁾ 5
74	Mears & Powell	Metomkin						Oyster- Building, also used to clean fish (5)5
75	Wachapreague Seafood Company	Metomkin	Finney Creek	.036 ^{(4)<u>4</u>}		144		Sea Clam
76	George D. Spence and Son	Machipongo						Crab Shedding ⁽⁵⁾ 5
77	George D. Spence and Son	Machipongo						Crab Picking, no discharge
78	George T. Bell	Machipongo						No Discharge, Oyster
79	George D. Spence and Son	Machipongo	Upshur Bay					Oyster ⁽⁵⁾ 5

80	Peters Seafood	Machipongo					Oyster ⁽⁶⁾⁶
81	J.E. Hamblin	Machipongo					Oyster, No discharge
83	Nathan Bell Seafood	Machipongo					Clams, Hard ⁽⁵⁾
84	John L. Marshall Seafood	Machipongo					Clams ⁽⁵⁾ 5
85	American Original Foods, Inc.	Machipongo	Parting Creek	.151 ^{(4)<u>4</u>}	2632	1337	
86	Harvey & Robert Bowen	Machipongo	Parting Creek	.0006 ⁽⁴⁾⁴	6.2	1.7	Oyster
87	H.M. Terry	Machipongo	Parting Creek	.0004 ⁽⁴⁾⁴	3.3	.62	Oyster
89	Webb's Island Seafood	South Ocean Area					Clams ⁽⁵⁾ 5
90	Cliff's Seafood	South Ocean Area	Mockhorn Bay				Oyster & Clam ⁽⁵⁾ 5
92	H. Allen Smith	South Ocean Area		.037 ⁽⁴⁾⁴	213	522	Sea Clam
94	C & D Seafood, Inc.	South Ocean Area	Oyster Harbor	.04 ^{(4)<u>4</u>}	427	204 sea clam 34 ⁽²⁾² oyster	Sea Clam, Oyster
95	B.L. Bell & Sons	South Ocean Area	Oyster Harbor	.001(4)4	12	.9	Oyster
98	Lance Fisher Seafood Co.	Pocomoke		.02 ⁽⁴⁾ 4	38	12.8	Oyster and Clam
99	Fisher & Williams/Lester Fisher	Messongo					Building used to shed soft crabs ⁽⁵⁾ 5
100	Grady Rhodes Seafood	Messongo					Sold business, Building used to shed soft crabs (5)5
101	Bonowell Bros.	Messongo	Pocomoke Sound	.001(4)4	12	2.5	Oyster
102	John H. Lewis & Co.	Messongo	Starling Creek				Oyster SS only, no discharge
103	Eastern Shore Seafood	Beasly					Crab, no discharge
106	Ashton's Seafood, Inc.	Pungoteague					Shell stock dealer-no discharge
107	Nandua Seafood Co.	Nandua		.0001(4)4	.2	.9	Crab
108	A.M. Acuff	Cherrystone					Building used for storage, no discharge

110	D.L. Edgerton Co.	Cherrystone	Mud Creek				Conch. In operation. Retort drains overboard & fish wash-down (5)5
111 & 112	Tangier Island Seafood, Inc.	Tangier					Crab ⁽⁵⁾ 5
113	Tangier	Chesapeake Bay					1000 KW Power Station
114	Chincoteague	Chincoteague Channel					2100 KW Power Station
115	Parksley						2400 KW Power Station
116	Tasley						1400 KW Power Station
117	Bayview						10,000 KW Power Station
118	Cape Charles	Cape Charles Harbor					1200 KW Power Station
119	Burdick Well & Pump Company						Holding Pond, no discharge
120	Marshall & Son Crab Company	Messongo Cr.					Crab Shedding ⁽⁵⁾ 5
	Linton & Lewis Crab Co.	Pocomoke Sound					Crab Shedding ⁽⁵⁾ 5
122	D.L. Edgerton	Chincoteague					Fish Washdown ⁽⁵⁾ 5
123	Evans Bros. Seafood Co.	Pocomoke Sound					Crab Shedding ⁽⁵⁾ 5
124	Stanley F. Linton	Messongo	Starling Cr.				Crab Shedding ⁽⁵⁾ 5
125	H.V. Drewer &	Messongo	Starling Cr.	.035 ⁽⁴⁾⁴	349	736-clam	Oyster & Clam
123	Son	Wessongo	Starting Cr.	.018 ⁽⁴⁾⁴	180	198-oyster	Oyster & Clair
126	Chincoteague Fish Co., Inc.	Chincoteague Channel					Fish Washdown ⁽⁵⁾ 5
127	Chincoteague Crab Company	Assateague Channel			.18 ⁽²⁾²	.54 ⁽²⁾²	Crab & Crab Shedding
128	Aldon Miles & Sons	Pocomoke Sound					Crab Shedding ⁽⁵⁾ 5
129	Saxis Crab Co.	Messongo	Starling Cr.				Crab Shedding ⁽⁵⁾ 5
	Paul Watkinson SFD	Pocomoke Sound					Crab Shedding ⁽⁵⁾ 5
131	Russell Fish Co., Inc	Chincoteague Channel					Fish ⁽⁵⁾⁵
132	Mason Seafood Co.	Chincoteague Channel		.002(4)4	7.7	13.7	Oysters

NOTE Notes

C. Nitrogen and phosphorus waste load wasteload allocations to restore the Chesapeake Bay and its tidal rivers. The following table presents nitrogen and phosphorus waste load wasteload allocations for the identified significant dischargers and the total nitrogen and total phosphorus waste load wasteload allocations for the listed facilities.

Virginia Waterbody ID	Discharger Name	VPDES Permit No.	Total Nitrogen (TN) Waste <u>Load-Wasteload</u> Allocation (lbs/yr)	Total Phosphorus (TP) Waste <u>Load-Wasteload</u> Allocation (lbs/yr)
C16E	Cape Charles Town WWTP ⁽¹⁾ 1	VA0021288	6,091	457
C11E	Onancock WWTP ⁽²⁾ 2	VA0021253	9,137	685
C13E	Shore Memorial Hospital	VA0027537	1,218	91
C10E	Tangier WWTP	VA0067423	1,218	91
C10R	Tyson Foods – Temperanceville	VA0004049	22,842	1,142
	TOTALS:		40,506	2,467

NOTE Notes:

9VAC25-720-120. York River Basin.

A. Total Maximum Daily Load maximum daily loads (TMDLs).

<u>TMDL</u> <u>#</u>	Stream Name	TMDL Title	City/County	WBID	<u>Pollutant</u>	$\underline{\text{WLA}}^1$	<u>Units</u>
<u>1.</u>	Matadequin Creek	Bacteria TMDL for Matadequin Creek	<u>Hanover</u>	<u>F13</u>	<u>E. coli</u>	<u>0</u>	cfu/year
<u>2.</u>	Monquin Creek	Bacteria Total Maximum Daily Load Development for the Pamunkey River Basin	King William	<u>F13</u>	<u>E. coli</u>	8.71E+10	<u>cfu/year</u>
<u>3.</u>	Pamunkey River	Bacteria Total Maximum Daily Load Development for the Pamunkey River Basin	King William, Hanover, Spotsylvania, Orange, Louisa	F01, F02, F03, F04, F05, F06, F07, F08, F09, F10, F11, F12, F13	<u>E. coli</u>	2.49E+13	<u>cfu/year</u>

⁽H) Water quality data taken from Discharge Monitoring Reports or special studies unless indicated.

⁽²⁾²NPDES Permit limits given since the permit is new and discharge monitoring reports not yet available.

⁽³⁾²Data from Accomack-Northampton Co. Water Quality Management Plan.

⁽⁴⁾⁴ Estimated.

⁽⁵⁾⁵ May need a permit -- either company has not responded to SWCB letter or operation has just started up.

⁽⁶⁾⁶ No limits -- has an NPDES permit, but is not required to monitor.

⁽H)Cape Charles STP: waste load wasteload allocations (WLAs) based on a design flow capacity of 0.5 million gallons per day (MGD). If plant is not certified to operate at 0.5 MGD design flow capacity by December 31, 2010, the WLAs will decrease to TN = 3,046 lbs/yr; TP = 228 lbs/yr, based on a design flow capacity of 0.25 MGD.

⁽²⁾² Onancock STP: waste load wasteload allocations (WLAs) based on a design flow capacity of 0.75 million gallons per day (MGD). If plant is not certified to operate at 0.75 MGD design flow capacity by December 31, 2011, the WLAs will decrease to TN = 3,046 lbs/yr; TP = 228 lbs/yr, based on a design flow capacity of 0.25 MGD.

<u>4.</u>	Black Creek	Bacteria Total Maximum Daily Load Development for the Pamunkey River Basin	New Kent	<u>F13</u>	<u>E. coli</u>	<u>1.26E+10</u>	cfu/year
<u>5.</u>	Mechumps Creek	Bacteria TMDL for Mechumps Creek	<u>Hanover</u>	<u>F12</u>	E. coli	1.00E+12	cfu/year
<u>6.</u>	Taylors Creek	Bacteria Total Maximum Daily Load Development for the Pamunkey River Basin	<u>Hanover</u>	<u>F03</u>	<u>E. coli</u>	1.89E+09	cfu/year
<u>7.</u>	Northeast Creek	Bacteria Total Maximum Daily Load Development for the Pamunkey River Basin	<u>Spotsylvania</u>	<u>F09</u>	<u>E. coli</u>	2.30E+10	<u>cfu/year</u>
<u>8.</u>	Totopotomoy Creek	Bacteria Total Maximum Daily Load Development for the Pamunkey River Basin	<u>Hanover</u>	<u>F13</u>	<u>E. coli</u>	2.62E+10	<u>cfu/year</u>
<u>9.</u>	Newfound River	Bacteria Total Maximum Daily Load Development for the Pamunkey River Basin	<u>Hanover</u>	<u>F05</u>	<u>E. coli</u>	2.89E+10	cfu/year
<u>10.</u>	South Anna River (F02R-01)	Bacteria Total Maximum Daily Load Development for the Pamunkey River Basin	<u>Louisa</u>	F01, F02	<u>E. coli</u>	<u>1.48E+12</u>	cfu/year
11.	South Anna River (F01R-01)	Bacteria Total Maximum Daily Load Development for the Pamunkey River Basin	<u>Louisa</u>	<u>F01</u>	<u>E. coli</u>	1.64E+12	cfu/year
12.	South Anna River (F04R-01)	Bacteria Total Maximum Daily Load Development for the Pamunkey River Basin	<u>Louisa</u>	<u>F01, F02</u>	<u>E. coli</u>	1.72E+12	cfu/year
<u>13.</u>	South Anna River (F04R-02)	Bacteria Total Maximum Daily Load Development for	<u>Louisa,</u> <u>Hanover</u>	F01, F02, F03, F04, F05	E. coli	3.48E+12	<u>cfu/year</u>

		the Pamunkey River Basin					
<u>14.</u>	Adams Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Poropotank River and Adams Creek	Gloucester	<u>F26</u>	Fecal coliform	4.48E+08	MPN/day
<u>15.</u>	Poropotank River and Morris Bay	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Poropotank River and Adams Creek	Gloucester	<u>F26</u>	<u>Fecal</u> coliform	4.78E+09	MPN/day
<u>16.</u>	Felgates Creek	Bacteria Total Maximum Daily Load Development for the Queen Creek, King Creek, and Felgates Creek Watersheds	<u>York</u>	<u>F27</u>	Fecal coliform	3.70E+10	MPN/day
<u>17.</u>	King Creek	Bacteria Total Maximum Daily Load Development for the Queen Creek, King Creek, and Felgates Creek Watersheds	<u>York</u>	<u>F27</u>	<u>Fecal</u> coliform	4.37E+10	MPN/day
18.	Queen Creek	Bacteria Total Maximum Daily Load Development for the Queen Creek, King Creek, and Felgates Creek Watersheds	<u>York,</u> <u>Williamsburg</u>	<u>F26</u>	<u>Fecal</u> coliform	9.69E+11	MPN/day
<u>19.</u>	Perrin River, upper	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Sarah Creek and Perrin River	<u>Gloucester</u>	<u>F27</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day

<u>20.</u>	Sarah Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - Sarah Creek and Perrin River	Gloucester	<u>F27</u>	<u>Fecal</u> <u>coliform</u>	<u>N/A²</u>	MPN/day
<u>21.</u>	Plentiful Creek	Bacteria TMDLs for York River Basin	<u>Spotsylvania</u>	<u>F07</u>	E. coli	3.57E+09	cfu/year
22.	Mountain Run	Bacteria TMDLs for York River Basin	<u>Orange</u>	<u>F06</u>	E. coli	1.22E+10	cfu/year
23.	Beaver Creek	Bacteria TMDLs for York River Basin	<u>Orange</u>	<u>F06</u>	E. coli	1.25E+10	cfu/year
<u>24.</u>	Terrys Run	Bacteria TMDLs for York River Basin	<u>Orange</u>	<u>F07</u>	E. coli	1.86E+10	cfu/year
<u>25.</u>	Pamunkey Creek and Tomahawk Creek	Bacteria TMDLs for York River Basin	<u>Orange</u>	<u>F07</u>	E. coli	9.05E+10	cfu/year
<u>26.</u>	Goldmine Creek	Bacteria TMDLs for York River Basin	<u>Louisa</u>	<u>F06</u>	E. coli	1.09E+11	cfu/year
<u>27.</u>	Lower Pamunkey River	Bacteria Total Maximum Daily Load Development for the Upper York River, the Lower Pamunkey River, and the Lower Mattaponi River (Tidal) Watersheds	New Kent, King William	<u>F14</u>	Enterococci	1.34E+10	cfu/day
<u>28.</u>	Lower Mattaponi River	Bacteria Total Maximum Daily Load Development for the Upper York River, the Lower Pamunkey River, and the Lower Mattaponi River (Tidal) Watersheds	King and Queen, King William	F24, F25	Enterococci	<u>1.42E+10</u>	<u>cfu/day</u>

<u>29.</u>	<u>Upper York</u> <u>River</u>	Bacteria Total Maximum Daily Load Development for the Upper York River, the Lower Pamunkey River, and the Lower Mattaponi River (Tidal) Watersheds	New Kent, King William, King and Queen	<u>F14, F24,</u> <u>F25, F26</u>	Enterococci	2.76E+10	<u>cfu/day</u>
<u>30.</u>	Upper York River	Bacteria Total Maximum Daily Load Development for the Upper York River, the Lower Pamunkey River, and the Lower Mattaponi River (Tidal) Watersheds	New Kent, King William, King and Queen	<u>F14, F24,</u> <u>F25, F26</u>	<u>Fecal</u> coliform	1.14E+12	counts/day
31.	Taskinas Creek	TMDL Report for Chesapeake Bay Shellfish Waters: Ware Creek, Taskinas Creek, and Skimino Creek Bacterial Impairments	James City	<u>F26</u>	<u>Fecal</u> coliform	4.97E+08	MPN/day
<u>32.</u>	Skimino Creek	TMDL Report for Chesapeake Bay Shellfish Waters: Ware Creek, Taskinas Creek, and Skimino Creek Bacterial Impairments	James City	<u>F26</u>	<u>Fecal</u> coliform	1.34E+09	MPN/day
<u>33.</u>	Ware Creek	TMDL Report for Chesapeake Bay Shellfish Waters: Ware Creek, Taskinas Creek, and Skimino Creek Bacterial Impairments	James City	<u>F26</u>	<u>Fecal</u> coliform	1.36E+09	MPN/day
<u>34.</u>	Aberdeen Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - York River: Gloucester Point to Jones Creek	Gloucester	<u>F26</u>	Fecal coliform	<u>N/A²</u>	MPN/day

<u>35.</u>	Carter Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - York River: Gloucester Point to Jones Creek	<u>Gloucester</u>	<u>F27</u>	<u>Fecal</u> coliform	<u>N/A²</u>	MPN/day
<u>36.</u>	Cedarbush Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - York River: Gloucester Point to Jones Creek	Gloucester	<u>F27</u>	Fecal coliform	<u>N/A²</u>	<u>MPN/day</u>
<u>37.</u>	Jones Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - York River: Gloucester Point to Jones Creek	Gloucester	<u>F26</u>	Fecal coliform	N/A ²	MPN/day
<u>38.</u>	Timberneck Creek	Total Maximum Daily Load (TMDL) Report for Shellfish Areas Listed Due to Bacterial Contamination - York River: Gloucester Point to Jones Creek	Gloucester	<u>F27</u>	Fecal coliform	N/A ²	MPN/day

Notes:

TABLE B1 -- RECOMMENDED STREAM SEGMENTS IN THE YORK RIVER BASIN

Segment Number	Classification	Name of River (Description)*
8-1	E <u>.</u> L <u>.</u>	North Anna River (main and tributaries except Goldmine Creek and Contrary Creek) R.M. 68.4-0.0
8-2	E <u>.</u> L <u>.</u>	Goldmine Creek
8-3	W <u>.</u> Q <u>.</u>	Contrary Creek (main only) R.M. 9.5-0.0
8-4	E <u>.</u> L <u>.</u>	South Anna River (main and tributaries) R.M. 101.2-97.1

The total WLA can be increased prior to modification provided that DEQ tracks these changes for bacteria TMDLs where the permit is consistent with water quality standards for bacteria.

²There were no point source dischargers in the modeled TMDL area.

B. Stream segment classifications, effluent limitations including water quality based effluent limitations, and waste load wasteload allocations.

E <u>.</u> L <u>.</u>	South Anna River (main only) R.M. 97.1-77.4
E <u>.</u> L <u>.</u>	South Anna River (main and tributaries) R.M.77.4-0.0
E <u>.</u> L <u>.</u>	Pamunkey River (main and tributaries) R.M. 90.7-12.2
W <u>.Q.</u>	Pamunkey River (main only) R.M. 12.2-0.0
E <u>.</u> L <u>.</u>	Mattaponi River (main and tributaries) R.M.102.2-10.2
E <u>.</u> L <u>.</u>	Mattaponi River (main only) R.M.10.2-0.0
W <u>.Q.</u>	York River (main only) R.M. 30.4-22.4
E <u>.</u> L <u>.</u>	York River (main and tributaries except King Creek and Carter Creek) -R.M. 22.4-0.0
E <u>.</u> L <u>.</u>	Carter Creek (main and tributaries) R.M. 5.4-2.0
E <u>.</u> L <u>.</u>	Carter Creek (main only) R.M. 2.0-0.0
E <u>.</u> L <u>.</u>	King Creek (main only) R.M.5.6-0.0
W <u>.Q.</u>	Condemned shellfish areas- Timberneck, Queens, and Sarah Creeks and portions of the main stream of the York River.
	E_L_ E_L_ W_Q_ E_L_ E_L_ W_Q_ E_L_ E_L_ E_L_ E_L_ E_L_ E_L_ E_L_

Notes:

*R.M.= River Mile, measured from the river mouth

Source: Roy F. Western

TABLE B2 -- WASTE LOAD WASTELOAD ALLOCATIONS (IN LBS PER DAY)

POINT	1977 WASTE LOAD² <u>WASTELOAD²</u>		MAXIMUM ⁷ DAILY LOAD		RECOMMENDED ALLOCATION		RAW WASTE LOAD WASTELOAD AT 1995		REQUIRED & REMOVAL EFFICENCY EFFICIENCY 1995		
SOURCE	CBOD ₅	UBOD ¹	CBOD ₅	UBOD	CBOD ₅	UBOD	PER- CENT RE- SERVE	CBOD ₅	UBOD	CBOD ₅	UBOD
Gordons- ville	145	398	150	412	150	412	0	1950	2730	92	85
Louisa- Mineral	50	108	55	118	55	118	0	850	1150	93	90
Doswell	52	110	862 ⁸	14078	690 ⁸	1125 ⁸	20	1080	1444	85 ⁴	71
Thornburg	63	150	68	162	68	162	0	1240	1690	94	90
Bowling Green	27	64	29	68	29	68	0	680	926	96	93
Ashland	160	303	235	559	188	447	20	2250	3825	92	88
Hanover (Regional STP)	170	437	280	820	280	820	0	5730	7930	96	90
Chesa- peake Corp.	6400	8000	104455	15000 ⁵	104455	15000 ⁵	N/A	51700	64630	90	90
West Point	105	380	281 ³	1020	225	814	20	1000	1600	85 ⁴	66

Notes:

 $\overline{^{1}BOD}$ is Ultimate Biochemical Oxygen Demand. Its concentration is derived by the following: BOD₅ /0.80+ 4.5(TKN)=(UBOD). NOTE: The amount of TKN utilized depends on the location in the basin.

Source: Roy F. Weston, Inc.

C. Nitrogen and phosphorus <u>waste load</u> allocations to restore the Chesapeake Bay and its tidal rivers. The following table presents nitrogen and phosphorus <u>waste load</u> <u>wasteload</u> allocations for the identified significant dischargers and the total nitrogen and total phosphorus <u>waste load</u> <u>wasteload</u> allocations for the listed facilities.

Virginia Waterbody ID	Discharger Name	VPDES Permit No.	Total Nitrogen (TN) Waste Load Wasteload Allocation (lbs/yr)	Total Phosphorus (TP) Waste <u>Load-Wasteload</u> Allocation (lbs/yr)
F20R	Caroline County STP	VA0073504	9,137	1,066
F01R	Gordonsville STP	VA0021105	17,177	2,004
F04R	Ashland WWTP	VA0024899	36,547	4,264
F09R	Doswell WWTP	VA0029521	18,273	2,132
F09R	Bear Island Paper Company	VA0029521	47,328	12,791
F27E	Giant Yorktown Refinery	VA0003018	167,128	22,111
F27E	HRSD - York River STP	VA0081311	274,100	31,978
F14R	Parham Landing WWTP ⁽¹⁾ 1	VA0088331	36,547	4,264
F14E	Smurfit Stone - West Point	VA0003115	259,177	70,048
F12E	Totopotomoy WWTP	VA0089915	182,734	21,319
F25E	West Point STP	VA0075434	10,964	1,279
C04E	HRSD - Mathews Courthouse STP	VA0028819	1,827	213
	TOTALS:		1,060,939	173,469

NOTES Notes:

9VAC25-720-130. New River Basin.

A. Total Maximum Daily Load maximum daily loads (TMDLs).

TMDL #	Stream Name	TMDL Title	City/County	WBID	Pollutant	WLA ¹	Units
1.	Stroubles Creek	Benthic TMDL for Stroubles Creek in Montgomery County, Virginia	Montgomery	N22R	Sediment	233.15	T/YR
2.	Back Creek	Fecal Bacterial and General Standard Total Maximum Daily Load	Pulaski	N22R	Sediment	0.28	T/YR

²Projected for 1977 based on population projections.

³Recommended allocation based on BPCTCA effluent guidelines applied to raw waste loads at 2020.

⁴Minimum removal efficiency.

⁵Allocation based on BPCTCA effluent guidelines; amended by Minute 25, June 3-5, 1979 board meeting.

⁷Assimilative capacity.

⁸Amended by Minute 1, August 17, 1978, board meeting.

⁽H)Parham Landing WWTP: waste load wasteload allocations (WLAs) based on a design flow capacity of 2.0 million gallons per day (MGD). If plant is not certified to operate at 2.0 MGD design flow capacity by December 31, 2010, the WLAs will decrease to TN = 10,416 lbs/yr; TP = 1,215 lbs/yr, based on a design flow capacity of 0.57 MGD.

		Development for Back Creek Watershed, Pulaski County, VA					
3.	Crab Creek	Fecal Bacterial and General Standard Total Maximum Daily Load Development for Crab Creek Watershed, Montgomery County, VA	Montgomery	N18R	Sediment	77	T/YR
4.	Peak Creek	Fecal Bacterial and General Standard Total Maximum Daily Load Development for Peak Creek Watershed, Pulaski County, VA	Pulaski	N17R	Copper	12	KG/YR
5.	Peak Creek	Fecal Bacterial and General Standard Total Maximum Daily Load Development for Peak Creek Watershed, Pulaski County, VA	Pulaski	N17R	Zinc	57	KG/YR
6.	Bluestone River	Fecal Bacterial and General Standard Total Maximum Daily Load Development for Bluestone River	Tazewell	N36R	Sediment	116.2	T/YR
7.	Hunting Camp Creek	Total Maximum Daily Load (TMDL) Development for Hunting Camp Creek Aquatic Life Use (Benthic) and E. coli (Bacteria) Impairments	Bland	N31R	Sediment	0	LB/YR
8.	Chestnut Creek	Total Maximum Daily Load Development for Chestnut Creek, Fecal Bacteria and General Standard (Benthic)	Carroll, Grayson	N06R	Sediment	18.9	T/YR
9.	Laurel Fork	Benthic TMDL for Laurel Fork, Sussex County, Virginia	Tazewell, Pocahontas	N37R	Sediment	21	T/YR
10.	Little River	Bacteria, Benthic, and Temperature Total Maximum Daily Loads in the Little River Watershed of Floyd and Montgomery Counties, Virginia	Floyd, Pulaski, Montgomery	N19R, N21R	Sediment	116.49	T/YR
11.	Back Creek	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Back Creek	<u>Pulaski</u>	<u>N22</u>	<u>E. coli</u>	2.61E+09	cfu/year

12.	Bluestone River	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Bluestone River	<u>Tazewell</u>	<u>N36</u>	<u>E. coli</u>	9.41E+12	<u>cfu/year</u>
<u>13.</u>	Chestnut Creek	Total Maximum Daily Load Development for Chestnut Creek Fecal Bacteria and General Standard (Benthic)	Carroll, Galax, Grayson	<u>N06</u>	E. coli	1.74E+09	cfu/year
14.	Crab Creek	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Crab Creek	Montgomery	<u>N18</u>	E. coli	3.40E+08	cfu/year
<u>15.</u>	Cripple Creek #1	Bacteria Total Maximum Daily Load (TMDL) Development for Cripple Creek	Smyth	<u>N09</u>	E. coli	2.94E+10	cfu/year
<u>16.</u>	Cripple Creek #2	Bacteria Total Maximum Daily Load (TMDL) Development for Cripple Creek	Smyth, Wythe	<u>N09</u>	E. coli	1.87E+11	cfu/year
<u>17.</u>	Cripple Creek #3	Bacteria Total Maximum Daily Load (TMDL) Development for Cripple Creek	Smyth, Wythe	<u>N09</u>	E. coli	2.82E+11	cfu/year
<u>18.</u>	Dodd Creek and tributaries	Fecal coliform TMDL for Dodd Creek Watershed	Floyd	<u>N20</u>	Fecal coliform	6.91E+11	<u>cfu/year</u>
<u>19.</u>	Elk Creek	Bacteria Total Maximum Daily Load Development for Elk Creek	Grayson	<u>N05</u>	E. coli	1.48E+11	cfu/year
<u>20.</u>	Hunting Camp Creek	Total Maximum Daily Load (TMDL) Development for Hunting Camp Creek	Bland	<u>N31</u>	<u>E. coli</u>	<u>0</u>	cfu/year
21.	Laurel Fork	Total Maximum Daily Load Development for Laurel Fork Fecal Bacteria, Dissolved Oxygen and General Standard (Benthic)	<u>Tazewell</u>	<u>N37</u>	E. coli	8.72E+11	cfu/year
22.	Little River and tributaries	Bacteria, Benthic, and Temperature Total Maximum Daily Loads in the Little River Watershed	Floyd, Montgomery	N19, N20, N21	<u>E. coli</u>	1.13E+13	<u>cfu/year</u>

	T	T	I		1		
23.	Dodd Creek, lower (DDD01)	Bacteria, Benthic, and Temperature Total Maximum Daily Loads in the Little River Watershed	Floyd	<u>N20</u>	<u>Temperature</u>	<u>0.82</u>	<u>J/m²/s</u>
<u>24.</u>	West Fork Dodd Creek (VAW- N20R DDW01A02)	Bacteria, Benthic, and Temperature Total Maximum Daily Loads in the Little River Watershed	Floyd	<u>N20</u>	Temperature	0.99	J/m ² /s
<u>25.</u>	Little River, upper (LRV03)	Bacteria, Benthic, and Temperature Total Maximum Daily Loads in the Little River Watershed	Floyd	<u>N19</u>	Temperature	1.03	J/m ² /s
<u>26.</u>	Big Indian Creek (VAW- N21R BIC01A02)	Bacteria, Benthic, and Temperature Total Maximum Daily Loads in the Little River Watershed	Floyd	<u>N21</u>	<u>Temperature</u>	<u>1.2</u>	J/m ² /s
<u>27.</u>	Dodd Creek, upper (DDD02)	Bacteria, Benthic, and Temperature Total Maximum Daily Loads in the Little River Watershed	Floyd	<u>N20</u>	<u>Temperature</u>	<u>1.3</u>	J/m ² /s
<u>28.</u>	Pine Creek (VAW- N19R PNC01A06)	Bacteria, Benthic, and Temperature Total Maximum Daily Loads in the Little River Watershed	Floyd	<u>N19</u>	<u>Temperature</u>	<u>1.35</u>	J/m ² /s
<u>29.</u>	Little River, middle (LRV02)	Bacteria, Benthic, and Temperature Total Maximum Daily Loads in the Little River Watershed	Floyd	<u>N19</u>	<u>Temperature</u>	<u>1.44</u>	J/m ² /s
<u>30.</u>	Little River, lower (LRV01)	Bacteria, Benthic, and Temperature Total Maximum Daily Loads in the Little River Watershed	Floyd, Montgomery	<u>N19,</u> <u>N20,</u> <u>N21</u>	<u>Temperature</u>	<u>1.66</u>	J/m ² /s
31.	Mill Creek and tributaries	Fecal Coliform TMDL for Mill Creek Watershed	Montgomery	<u>N21</u>	Fecal coliform	2.62E+11	cfu/year
<u>32.</u>	Peak Creek	Fecal Bacteria and General Standard Total Maximum Daily Load Development for Peak Creek	<u>Pulaski</u>	<u>N17</u>	E. coli	8.70E+08	cfu/year
<u>33.</u>	Mill Creek	Bacteria Total Maximum Daily Load Development for Mill Creek, Cove Creek, Miller Creek, Stony Fork, Tate Run, South Fork Reed Creek and Reed Creek	Wythe	<u>N10</u>	<u>E. coli</u>	6.79E+10	cfu/year

<u>34.</u>	Tate Run	Bacteria Total Maximum Daily Load Development for Mill Creek, Cove Creek, Miller Creek, Stony Fork, Tate Run, South Fork Reed Creek and Reed Creek	<u>Wythe</u>	<u>N10</u>	<u>E. coli</u>	7.99E+10	cfu/year
35.	Stony Fork	Bacteria Total Maximum Daily Load Development for Mill Creek, Cove Creek, Miller Creek, Stony Fork, Tate Run, South Fork Reed Creek and Reed Creek	Wythe	<u>N10</u>	<u>E. coli</u>	9.00E+10	cfu/year
<u>36.</u>	Miller Creek	Bacteria Total Maximum Daily Load Development for Mill Creek, Cove Creek, Miller Creek, Stony Fork, Tate Run, South Fork Reed Creek and Reed Creek	<u>Wythe</u>	<u>N11</u>	<u>E. coli</u>	2.63E+11	cfu/year
<u>37.</u>	Reed Creek (VAS- N10R RDC01B00)	Bacteria Total Maximum Daily Load Development for Mill Creek, Cove Creek, Miller Creek, Stony Fork, Tate Run, South Fork Reed Creek and Reed Creek	Wythe	<u>N10</u>	<u>E. coli</u>	4.32E+11	cfu/year
<u>38.</u>	Cove Creek	Bacteria Total Maximum Daily Load Development for Mill Creek, Cove Creek, Miller Creek, Stony Fork, Tate Run, South Fork Reed Creek and Reed Creek	Wythe	<u>N12</u>	<u>E. coli</u>	7.40E+11	cfu/year
<u>39.</u>	Reed Creek (VAS- N10R RDC01A02)	Bacteria Total Maximum Daily Load Development for Mill Creek, Cove Creek, Miller Creek, Stony Fork, Tate Run, South Fork Reed Creek and Reed Creek	Wythe	<u>N10</u>	<u>E. coli</u>	8.71E+11	cfu/year
40.	Reed Creek (VAS- N10R RDC01A00)	Bacteria Total Maximum Daily Load Development for Mill Creek, Cove Creek, Miller Creek, Stony Fork, Tate Run, South Fork Reed Creek and Reed Creek	Wythe	<u>N10</u>	E. coli	2.18E+12	cfu/year
41.	Reed Creek, South Fork	Bacteria Total Maximum Daily Load Development for Mill Creek, Cove Creek, Miller Creek, Stony Fork, Tate Run, South Fork Reed Creek and Reed Creek	Wythe	<u>N10</u>	<u>E. coli</u>	2.18E+12	cfu/year

42.	Reed Creek (VAS- N11R RDC01B00)	Bacteria Total Maximum Daily Load Development for Mill Creek, Cove Creek, Miller Creek, Stony Fork, Tate Run, South Fork Reed Creek and Reed Creek	Wythe	N10, N11, N12	E. coli	3.80E+13	cfu/year
43.	Reed Ceek (VAS- N11R RDC02B02)	Bacteria Total Maximum Daily Load Development for Mill Creek, Cove Creek, Miller Creek, Stony Fork, Tate Run, South Fork Reed Creek and Reed Creek	Wythe	N10, N11, N12	E. coli	5.54E+13	cfu/year
44.	Reed Creek (VAS- N11R RDC03B04)	Bacteria Total Maximum Daily Load Development for Mill Creek, Cove Creek, Miller Creek, Stony Fork, Tate Run, South Fork Reed Creek and Reed Creek	Wythe	N10, N11, N12	E. coli	6.03E+13	cfu/year

Notes:

The total WLA can be increased prior to modification provided that DEQ tracks these changes for bacteria TMDLs where the permit is consistent with water quality standards for bacteria.

B. Non-TMDL waste load wasteload allocations.

Water Body	Permit No.	Facility Name	Receiving Stream	River Mile	Outfall No.	Parameter Description	WLA	Units WLA
VAS- N11R	VA0020281	Wytheville WWTP	Reed Creek	25.79	001	BOD_5	360	KG/D
VAS- N15R	VA0089443	Hillsville WWTP	Little Reed Island Creed	25.12	001	CBOD ₅ , JAN-MAY	118	KG/D
						CBOD ₅ , JUN-DEC	95	KG/D
VAW-	VA0024040	Montgomery Co. PSA - Riner Town - Sewage Treatment Plant	Mill Creek	5.12	001	BOD ₅	7.5	KG/D
N21R						TKN (N-KJEL)	1.9	KG/D
VAW- N22R	VA0060844	Blacksburg VPI Sanitation Auth Lower Stroubles Creek WWTP	New River	71.37	001	BOD₅	818	KG/D
VAS-	VA0025054	Bluefield Westside WWTP	Bluestone River	25.64	001	BOD ₅ , JUN-NOV	130	KG/D
N36R						BOD ₅ , DEC-MAY	260	KG/D
VAS- N36R	VA0062561	Tazewell County PSA - Falls Mills Hales Bottom STP	Bluestone River	22.49	001	BOD_5	5.5	KG/D
VAS- N37R	VA0029602	Pocahontas STP	Laurel Fork	1.99	001	BOD_5	17	KG/D

VAW- N21R	VA002040	Montgomery Co. PSA - Riner Town - Sewage Treatment Pant	Mill Creek	5.12	001	BOD₅ TKN (N-KJEL)	7.5	KG/D KG/D
VAW- N22R	VA0060844	Blacksburg VPI Sanitation Auth Lower Stroubles Creek WWTP	New River	71.37	001	BOD_5	818	KG/D

VA.R. Doc. No. R15-4127; Filed January 7, 2015, 1:44 p.m.

TITLE 10. FINANCE AND FINANCIAL INSTITUTIONS

STATE CORPORATION COMMISSION

Final Regulation

REGISTRAR'S NOTICE: The State Corporation Commission is claiming an exemption from the Administrative Process Act in accordance with § 2.2-4002 A 2 of the Code of Virginia, which exempts courts, any agency of the Supreme Court, and any agency that by the Constitution is expressly granted any of the powers of a court of record.

<u>Title of Regulation:</u> 10VAC5-120. Money Order Sellers and Money Transmitters (amending 10VAC5-120-10, 10VAC5-120-40, 10VAC5-120-50; adding 10VAC5-120-60 through 10VAC5-120-100).

Statutory Authority: §§ 6.2-1913 and 12.1-13 of the Code of Virginia.

Effective Date: February 15, 2015.

Agency Contact: Susan Hancock, Deputy Commissioner, Bureau of Financial Institutions, State Corporation Commission, P.O. Box 640, Richmond, VA 23218, telephone (804) 371-9701, FAX (804) 371-9416, or email susan.hancock@scc.virginia.gov.

Summary:

The amendments (i) define various terms and clarify the scope of the term "money transmission," (ii) require licensees to file a quarterly report of outstandings and permissible investments; (iii) clarify that permissible investments must be unencumbered and held solely in the name of the licensee; (iv) prohibit licensees from providing false, misleading, or deceptive information to the Bureau of Financial Institutions or a Virginia resident; (v) clarify that the acts and omissions of a licensee's authorized delegates constitute acts and omissions of the licensee; (vi) require licensees and former licensees to maintain their contact information with the Bureau of Financial Institutions until they have no outstanding money orders

and money transmission transactions; (vii) add certain receivables from depository institutions as permissible investments and limit receivables under § 6.2-1919 A 5 of the Code of Virginia as permissible investments; (viii) require licensees and their authorized delegates to dispose of records containing consumers' personal financial information in a secure manner; (ix) specify additional events that require licensees to file a written report with the Commissioner of Financial Institutions; (x) prescribe an application fee for any person submitting an application to acquire 25% or more of the ownership of a licensee; and (xi) prohibit licensees from allowing an authorized delegate to designate or appoint a subdelegate to sell money orders or engage in money transmission business.

Changes to the reporting requirements in 10VAC5-120-40 C in the final regulation clarify when a report is made and what information the report contains.

AT RICHMOND, JANUARY 12, 2015

COMMONWEALTH OF VIRGINIA, ex rel.

STATE CORPORATION COMMISSION

CASE NO. BFI-2014-00009

Ex Parte: In re: Money Order Sellers

and Money Transmitters

ORDER ADOPTING REGULATIONS

On September 24, 2014, the State Corporation Commission ("Commission") entered an Order to Take Notice of a proposal by the Bureau of Financial Institutions ("Bureau") to amend the Commission's regulations governing licensed money order sellers and money transmitters, which are set forth in Chapter 120 of Title 10 of the Virginia Administrative Code, 10VAC5-120-10 et seq. The Order to Take Notice and proposed regulations were published in the Virginia Register of Regulations on October 20, 2014, posted on the Commission's website, and sent to all licensed money order sellers and money transmitters, and other interested parties. Licensees and other interested parties were afforded the opportunity to file written comments or request a hearing on or before November 20, 2014.

Comments on the proposed regulations were filed by Terry Harbin of GSC Enterprises, Inc., and Bradley S. Lui, Esquire,

counsel for The Money Services Round Table. The Commission did not receive any requests for a hearing.

Mr. Harbin indicated in his comments that the requirement in 10VAC5-120-40 C that licensees file a written report with the Commissioner of Financial Institutions within one business day following the occurrence of certain events is unreasonable. He suggested a ten day reporting requirement following the occurrence of a covered event. Mr. Lui expressed a similar concern and suggested a thirty day reporting requirement following a licensee becoming aware of the occurrence of a covered event, not upon the actual occurrence of the event. Mr. Lui also noted that § 6.2-1917 of the Code of Virginia does not require licensees to report the expected impact of a covered event on the licensee's Virginia activities.

Mr. Lui further commented that the prohibitions in 10VAC5-120-60 B and 10VAC5-120-70 J on a licensee providing false, misleading, or deceptive information to the Bureau or to a Virginia resident may be overly broad and have the potential to apply to unintentional acts by a licensee. He recommended that the proposed regulations be modified to prohibit licensees from knowingly providing false, misleading, or deceptive information to the Bureau or to a Virginia resident, or providing such information with the intent to deceive.

The Bureau considered the comments filed and responded to them in its Statements of Position, which the Bureau filed with the Clerk of the Commission on December 17, 2014. In its response, the Bureau stated that it is amenable to (1) replacing the first instance of the word "following" in 10VAC5-120-40 C with the words "after a licensee becomes aware of"; and (2) removing the requirement that a licensee report the expected impact that a covered event would have on the licensee's Virginia activities. The Bureau otherwise recommended that the Commission adopt the proposed regulations as proposed.

NOW THE COMMISSION, having considered the proposed regulations, the comments filed, the Bureau's Statements of Position, the record herein, and applicable law, concludes that the proposed regulations should be modified to incorporate certain suggestions that were made by commenters and the Bureau. The Commission further concludes that the proposed regulations, as modified, should be adopted with an effective date of February 15, 2015.

Accordingly, IT IS ORDERED THAT:

- (1) The proposed regulations, as modified herein and attached hereto, are adopted effective February 15, 2015.
- (2) This Order and the attached regulations shall be posted on the Commission's website at: http://www.scc.virginia.gov/case.
- (3) The Commission's Division of Information Resources shall provide a copy of this Order, including a copy of the

attached regulations, to the Virginia Registrar of Regulations for publication in the Virginia Register of Regulations.

(4) This case is dismissed, and the papers filed herein shall be placed in the Commission's file for ended causes.

AN ATTESTED COPY hereof, together with a copy of the attached regulations, shall be sent by the Clerk of the Commission to the Commission's Office of General Counsel and the Commissioner of Financial Institutions, who shall forthwith send a copy of this Order, together with a copy of the attached regulations, to all licensed money order sellers and money transmitters, and such other interested parties as he may designate.

10VAC5-120-10. Definitions.

The following words and terms, when used in this chapter, shall have the following meaning meanings unless the context clearly indicates otherwise:

"Money "Authorized delegate," "licensee," "monetary value," "money order," "money transmission," and "licensee" "outstanding" shall have the meaning meanings ascribed to them in § 6.2-1900 of the Code of Virginia.

"Bureau," "commission," and "commissioner" shall have the meanings ascribed to them in § 6.2-100 of the Code of Virginia.

"Chapter 19" means Chapter 19 (§ 6.2-1900 et seq.) of Title 6.2 of the Code of Virginia.

"Generally accepted accounting principles" for purposes of Chapter 19 and this chapter means standard accounting guidelines as established and administered by the American Institute of Certified Public Accountants (AICPA) and the United States Financial Accounting Standards Board (FASB).

"Merchant or service provider" means a person engaged in the business of selling goods or services, but excluding a person licensed or required to be licensed under Chapter 19.

"Money transmission" for purposes of Chapter 19 and this chapter shall have the meaning ascribed to it in § 6.2-1900 of the Code of Virginia. However, the term shall not include the actions of an agent who collects funds on behalf of a merchant or service provider, provided that (i) the agent has been explicitly designated in a written agreement as an agent of the merchant or service provider; (ii) any funds collected by the agent shall be deemed for all purposes to be received by the merchant or service provider, regardless of whether the agent actually remits such funds to the merchant or service provider; (iii) the agent provides the Virginia resident with a dated receipt indicating that payment to the agent constitutes payment to the merchant or service provider; and (iv) there is no risk of loss to the Virginia resident if the agent fails to remit such resident's funds to the merchant or service provider. This definition shall not be construed to prohibit the merchant or service provider from seeking indemnification from its agent for any direct losses incurred due to the agent's failure to remit funds in accordance with its agreement.

"Reporting period" means a calendar quarter, the first six months of a calendar year, or the last six months of a calendar year, as the case may be.

"Senior officer" for purposes of Chapter 19 means an individual who has significant management responsibility within an organization or otherwise has the authority to influence or control the conduct of the organization's affairs, including but not limited to its compliance with applicable laws and regulations.

10VAC5-120-40. Reporting requirements.

- <u>A. 1.</u> Licensees licensed for less than three years shall file reports with the commissioner within 45 days after the end of each calendar quarter.
 - <u>2.</u> Licensees licensed for three years or longer shall file reports with the commissioner within 45 days after the end of each semiannual reporting period.
 - 3. Licensees affiliated by common ownership with another licensee licensed for three years or longer, and licensees which that acquire all or part of the money order sales business or money transmission business of another licensee licensed for three years or longer, shall file reports with the commissioner within 45 days after the end of each semiannual reporting period.
- <u>B. Licensees shall file a report of outstandings and permissible investments with the commissioner within 45 days after the end of each calendar quarter.</u>
- C. Within one business day [following after a licensee becomes aware of] the occurrence of any of the following events, [a the] licensee shall file a written report with the commissioner describing the event [and its expected impact, if any, on the activities of the licensee in Virginia]:
 - 1. Bankruptcy, reorganization, or receivership proceedings are filed by or against the licensee.
 - 2. Any local, state, or federal governmental authority institutes revocation, suspension, or other formal administrative, regulatory, or enforcement proceedings against the licensee.
 - 3. Any local, state, or federal governmental authority (i) revokes or suspends the licensee's money order seller license, money transmitter license, or other license for a similar business; (ii) takes formal administrative, regulatory, or enforcement action against the licensee relating to its money order sales, money transmission, or similar business; or (iii) takes any other action against the licensee relating to its money order sales, money transmission, or similar business where the total amount of restitution or other payment from the licensee exceeds \$20,000. A licensee shall not be required to provide the commissioner with information about such event to the extent that such disclosure is prohibited by the laws of another state.
 - 4. Based on allegations by any local, state, or federal governmental authority that the licensee violated any law

- or regulation applicable to the conduct of its licensed money order sales, money transmission, or similar business, the licensee enters into, or otherwise agrees to the entry of, a settlement or consent order, decree, or agreement with or by such governmental authority.
- 5. The licensee surrenders its money order seller license, money transmitter license, or other license for a similar business in another state in lieu of threatened or pending license revocation; license suspension; or other administrative, regulatory, or enforcement action.
- 6. The licensee is denied a money order seller license, money transmitter license, or other license for a similar business in another state.
- 7. The licensee or any of its members, partners, directors, officers, principals, employees, or authorized delegates is indicted or convicted of a felony.
- <u>D.</u> The reports <u>required by this section</u> shall contain such information as the commissioner may require. The commissioner may require such additional reports as he deems necessary.

10VAC5-120-50. Assessment schedule for the examination and supervision of money order sellers and money transmitters.

Pursuant to subsection B of § 6.2-1905 of the Code of Virginia, the commission sets the following schedule for the annual assessment to be paid by persons licensed under Chapter 19 (§ 6.2-1900 et seq.) of Title 6.2 of the Code of Virginia. The assessment defrays the costs of the examination and supervision of licensees by the Bureau of Financial Institutions bureau.

The annual assessment shall be \$0.000047 per dollar of money orders sold and money transmitted by a licensee pursuant to Chapter 19 (§ 6.2–1900 et seq.) of Title 6.2 of the Code of Virginia. The assessment shall be based on the dollar volume of business conducted by a licensee, either directly or through its authorized delegates, during the calendar year preceding the year of the assessment.

The amount calculated using the above schedule shall be rounded down to the nearest whole dollar.

Fees shall be assessed on or before August 1 for the current calendar year. The assessment shall be paid by licensees on or before September 1.

The annual report, due April 15 each year, of each licensee provides the basis for its assessment. In cases where a license has been granted between January 1 and April 15 of the year of the assessment, the licensee's initial annual assessment shall be \$0.

Fees prescribed and assessed pursuant to this schedule are apart from, and do not include, the following: (i) the annual license renewal fee of \$750 authorized by subsection A of § 6.2-1905 of the Code of Virginia and (ii) the reimbursement for expenses authorized by subsection C of § 6.2-1905 of the Code of Virginia.

10VAC5-120-60. Responding to requests from the Bureau of Financial Institutions; providing false, misleading, or deceptive information.

A. When the bureau requests a written response, books, records, documentation, or other information from a licensee or its authorized delegate in connection with the bureau's investigation, enforcement, or examination of compliance with applicable laws and regulations, the licensee or authorized delegate shall deliver a written response as well as any requested books, records, documentation, or information within the time period specified in the bureau's request. If no time period is specified, a written response as well as any requested books, records, documentation, or information shall be delivered by the licensee or its authorized delegate to the bureau not later than 30 days from the date of such request. In determining the specified time period for responding to the bureau and when considering a request for an extension of time to respond, the bureau shall take into consideration the volume and complexity of the requested written response, books, records, documentation, or information, and such other factors as the bureau determines to be relevant under the circumstances. Requests made by the bureau pursuant to this subsection are deemed to be in furtherance of the bureau's investigation and examination authority provided for in § 6.2-1910 of the Code of Virginia.

B. A licensee shall not provide any false, misleading, or deceptive information to the bureau.

10VAC5-120-70. Acquisitions; additional business requirements and restrictions; operating rules.

- A. Any person submitting an application to acquire, directly or indirectly, 25% or more of the voting shares of a corporation or 25% or more of the ownership of any other person licensed to conduct business under Chapter 19 shall pay a nonrefundable application fee of \$500.
- B. A licensee shall not permit an authorized delegate to designate or appoint a subdelegate to sell money orders or engage in money transmission business.
- C. The audited financial statements filed by a licensee pursuant to § 6.2-1905 D of the Code of Virginia shall cover the prior 12-month fiscal period and be prepared in accordance with generally accepted accounting principles.
- D. Quarterly financial statements filed by a licensee pursuant to § 6.2-1917 B of the Code of Virginia shall be consolidated and prepared in accordance with generally accepted accounting principles.
- E. A licensee shall comply with Chapter 19, this chapter, and all other state and federal laws and regulations applicable to the conduct of its business. For purposes of Chapter 19 and this chapter, the acts and omissions of a licensee's authorized delegates shall be deemed acts and omissions of such licensee.
- F. In addition to the records specified in § 6.2-1916 B of the Code of Virginia, a licensee shall maintain in its principal

- place of business such other books, accounts, and records as the commissioner may reasonably require in order to determine whether such licensee is complying with the provisions of Chapter 19, this chapter, and other laws and regulations applicable to the conduct of its business.
- G. If a licensee, authorized delegate, or former licensee disposes of records containing a consumer's personal financial information or copies of a consumer's identification documents, such records and copies shall be shredded, incinerated, or otherwise disposed of in a secure manner. A licensee, authorized delegate, or former licensee may arrange for service from a business record destruction vendor.
- H. A licensee or former licensee shall provide the following information to the bureau within 10 days after such person's license is surrendered or revoked or the licensed business is otherwise closed: (i) the names, addresses, telephone numbers, fax numbers, and email addresses of a designated contact person and the person who consumers may contact regarding outstanding money orders or money transmission transactions; (ii) the location of the licensee's or former licensee's money order and money transmission records; and (iii) any additional information that the bureau may reasonably require. A licensee or former licensee shall maintain current information with the bureau until the licensee or former licensee has no outstanding money orders and money transmission transactions.
- I. A person shall remain subject to the provisions of Chapter 19 and this chapter applicable to licensees in connection with all money orders sold and money or monetary value received for transmission while licensed under Chapter 19 notwithstanding the occurrence of any of the following events:
 - 1. The person's license is surrendered or revoked; or
 - 2. The person ceases selling money orders or transmitting money or monetary value.
- J. A licensee shall not provide any information to a Virginia resident that is false, misleading, or deceptive.
- K. A licensee shall not engage in any activity that directly or indirectly results in an evasion of the provisions of Chapter 19 or this chapter.
- L. A licensee shall continuously maintain the requirements and standards for licensure prescribed in § 6.2-1906 of the Code of Virginia.

10VAC5-120-80. Permissible investments.

- A. Permissible investments maintained by a licensee pursuant to § 6.2-1918 of the Code of Virginia shall be unencumbered and held solely in the name of the licensee.
- B. In addition to the investments specified in § 6.2-1919 of the Code of Virginia, the following investments shall be considered permissible under § 6.2-1918 of the Code of Virginia: any receivables that are (i) payable to a licensee from any bank, savings institution, or credit union that is chartered under the laws of the United States or any state

thereof; (ii) comprised of funds that have been tendered by residents of the United States for money transmission transactions; and (iii) no more than seven days old.

C. The receivables specified in § 6.2-1919 A 5 of the Code of Virginia shall be limited to funds that have been collected by a licensee's authorized delegates directly from residents of the United States for money transmission transactions.

10VAC5-120-90. Enforcement.

A. Failure to comply with any provision of Chapter 19 or this chapter may result in civil penalties, license revocation, the entry of a cease and desist order, or other appropriate enforcement action.

B. Pursuant to § 6.2-1920 of the Code of Virginia, a person required to be licensed under Chapter 19 shall be subject to a civil penalty of up to \$2,500 for every violation of Chapter 19, this chapter, or other law or regulation applicable to the conduct of the person's business. Furthermore, if a person violates any provision of Chapter 19, this chapter, or other law or regulation applicable to the conduct of the person's business in connection with multiple money order sales or money transmission transactions, the person shall be subject to a separate civil penalty for each money order sale or money transmission transaction. For example, if a person sells five money orders and the person violates two provisions of this chapter in connection with each of the five money order sales, there would be a total of 10 violations and the person would be subject to a maximum civil penalty of \$25,000.

10VAC5-120-100. Commission authority.

The commission may, at its discretion, waive or grant exceptions to any provision of this chapter for good cause shown.

VA.R. Doc. No. R15-4161; Filed January 21, 2015, 1:05 a.m.

TITLE 17. LIBRARIES AND CULTURAL RESOURCES

DEPARTMENT OF HISTORIC RESOURCES

Proposed Regulation

<u>Title of Regulation:</u> 17VAC10-30. Historic Rehabilitation Tax Credit (amending 17VAC10-30-10 through 17VAC10-30-160).

Statutory Authority: §§ 10.1-2202 and 58.1-339.2 of the Code of Virginia.

<u>Public Hearing Information:</u> No public hearings are scheduled.

Public Comment Deadline: April 10, 2015.

<u>Agency Contact:</u> Elizabeth Tune, Manager, Office of Preservation Incentives, Department of Historic Resources, 2801 Kensington Avenue, Richmond, VA 23221, telephone

(804) 482-6093, FAX (804) 367-2391, TTY (804) 367-2386, or email elizabeth.tune@dhr.virginia.gov.

<u>Basis</u>: The Department of Historic Resources (DHR) has specific statutory authority under § 58.1-339.2 of the Code of Virginia to promulgate regulations necessary to implement the Virginia Historic Rehabilitation Tax Credit Program. The regulation is mandated in whole by the state statute. The statute provides that the Director of the Department of Historic Resources shall establish by regulation the requirements needed for the program, including the fees to defray the necessary expenses and the extent to which the availability of the credit is coextensive with the availability of the federal rehabilitation tax credit.

<u>Purpose</u>: Amendment and clarification of the existing program regulations are necessary to enhance the ease of use for applicants, more clearly set out the application requirements and standards of review for both applicants and DHR staff, and establish stricter reporting requirements to prevent abuse of the program. Additionally, the amendments revise the existing fee structure to more accurately reflect the time and professional expertise necessary for DHR's review of projects.

By clarifying existing language, this amendment will make the application process and requirements easier to understand for property owners and promote the wide use of the program, which has demonstrated direct environmental, economic, and social benefits resulting from reinvestment in existing buildings and historic communities.

Enhancing the reporting and attestation requirements on the part of the applicant, both in the description and documentation of proposed and completed rehabilitation work and in the eligible rehabilitation expenses reported as being incurred through the project, is intended to prevent abuse of the program and increase the reliability and certainty of the information presented to DHR for certification.

Substance: The proposed amendments (i) revise definitions and define four new terms; (ii) explain the application requirements for properties that are individually listed in the Virginia Landmarks Register and clarify the procedure for Certifications of Historic Significance for moved buildings; (iii) describe in greater detail the process for obtaining Certifications of Rehabilitation, clarify the information that must be disclosed by the applicant and submitted to DHR for review, enhance the attestation requirements of the property owner, and amend the requirements for CPA review of eligible rehabilitation expenses and subsequent reporting by the property owner; (iv) revise the fee structure to refine the categories based on project costs and raise the review fees; (v) more clearly define what constitutes a rehabilitation project; (vi) provide a more detailed description of expenses that are not eligible for the rehabilitation tax credit; and (vii) stipulate that expenses incurred before 2003 are not eligible for the rehabilitation tax credits.

<u>Issues:</u> Amending the existing regulations to clarify the application process and reporting requirements will benefit all users of the program. The application process, necessary documentation, and reporting requirements will be more clearly described for property owners applying for the rehabilitation tax credit. This will also aid DHR in the review of rehabilitation projects, as the information submitted will be more complete, and DHR staff will be better able to review the information submitted and to respond to the applicant.

Strengthening the requirements for attestation and reporting by the owner, particularly the requirements for determining the eligible rehabilitation expenditures, will provide greater assurance to DHR and the Commonwealth that the information submitted is reliable and that subsequent certification of the application by DHR has a factual basis.

to the According existing regulations, property owners/applicants must obtain CPA certification of the eligible rehabilitation expenses for projects with expenses exceeding \$100,000. The proposed amendment would require that all projects have CPA review of expenses, according to the format proscribed by DHR policy. Thus, there will be a new requirement and associated cost for projects under the \$100,000 threshold. However, this important change is proposed to ensure that all expenses for which tax credits are granted are valid and eligible for the credits. It should be noted that the CPA certification of rehabilitation expenses also provides assurance to the property owner and their investors that the statement of eligible rehabilitation expenses is reliable. This change, therefore, will be beneficial to the property owners/applicants, DHR, and the Commonwealth.

The revised fee structure increases the fees charged by DHR for review of the applications. The existing fee structure, which has been in place since the inception of the program, no longer reflects the extensive amount of time and expertise required of DHR to review the applications and administer the program. The revised fee schedule includes more refined cost categories, and the fees charged for review of an application will not exceed 1.0% of project costs. While the cost to the applicant will increase, DHR believes that it is a fair and necessary change. Again, the increased fees will more accurately reflect the investment of resources required of DHR in review of projects and will allow DHR to maintain and, perhaps, expand its program capacity.

The proposed revisions have been carefully drafted to enhance the usability of the rehabilitation tax credit program, while ensuring its integrity for property owners, DHR, and the Commonwealth.

<u>Department of Planning and Budget's Economic Impact Analysis:</u>

Summary of the Proposed Amendments to Regulation. The Department of Historic Resources (DHR) proposes to amend its regulations governing historic property rehabilitation tax credits. Specifically, DHR proposes to make numerous

clarifying changes, add categories of fees and increase fees and change the rules under which a CPA audit is required.

Result of Analysis. There is insufficient information to accurately gauge whether benefits are likely to outweigh costs for substantive proposed changes. Since this is a voluntary program, however, owners of rehabilitated properties will likely not participate if the benefit they receive will not outweigh the costs of participation.

Estimated Economic Impact. DHR's Historic Rehabilitation Tax Credit regulations govern the allocation of tax credits for the refurbishment of historic properties. Qualifying property owners may claim credits against tax liabilities for 25% of eligible rehabilitation expenses. DHR proposes to make many clarifying changes to these regulations. None of these clarifying changes impose new restrictions or requirements on applicant property owners but instead are aimed at making regulatory text more understandable. Consequently, no entity is likely to incur any costs on account of these changes; to the extent that tax credit rules are made less opaque, affected property owners will benefit.

In addition to clarifying changes, DHR proposes to increase the number of fee categories to better calibrate fees to the cost of rehabilitation projects and also to increase fees to reflect the actual costs for DHR staff: DHR established these fees in 1997 and has not raised them since. A chart that shows current and proposed fee categories and amounts is below:

*DHR may, upon request, provide expedited review of applications within 5 days instead of the normal 30 days. Extra fees are charged when expedited review is provided.

CURRENT FEE CATEGORIES BY AMOUNT OF REHABILITATION COSTS	Current Part 2 Review Fee	Current Part 3 Review Fee	Current Additional Expedited Review Fee*
Less than \$50,000	Fee waived	\$100	\$100
\$50,000 to \$99,999	\$250	\$250	\$250
\$100,000 to \$499,999	\$400	\$400	\$400
\$500,000 to \$999,999	\$750	\$750	\$750
Rehabilitation costs greater than \$1,000,000	\$1,500	\$1,500	\$1,500
PROPOSED FEE CATEGORIES BY AMOUNT OF REHABILITATION COSTS	Proposed Part 2 Review Fee	Proposed Part 3 Review Fee	Proposed Additional Expedited Review Fee*
Less than \$100,000	\$250	\$250	\$500
\$100,000 to 249,999	\$500	\$500	\$1,000
\$250,000 to \$499,999	\$1,000	\$1,000	\$2,000

\$500,000 to \$999,999	\$2,000	\$2,000	\$4,000
\$1,000,000 to \$1,999,999	\$4,000	\$4,000	\$8,000
\$2,000,000 to \$3,499,999	\$5,000	\$5,000	\$10,000
\$3,500,000 to \$4,999,999	\$7,000	\$7,000	\$14,000
Rehabilitation costs greater than \$5,000,000	\$8,000	\$8,000	\$16,000

DHR also proposes to change the criteria under which property owners must pay for a financial review of their rehabilitation projects. Current regulations do not require a certified public accountant (CPA) review of projects with rehabilitation costs equal to or less than \$100,000 and only require a CPA or equivalent certification of the actual costs attributed to the rehabilitation project for projects of greater than \$100,000. DHR believes that this standard allows both inadvertent mistakes as well as fraud in deciding and reporting which expenses qualify. Consequently, DHR now proposes to require a CPA agreed-upon procedures report of expenses (that is equivalent to the certification now required of projects greater than \$100,000) for projects with rehabilitation costs of less than \$250,000 and to require a CPA audit for projects with costs greater than or equal to \$250,000. DHR staff reports that cost review work carried out under agreed-upon procedures will likely cost between \$1,000 and \$3,500 and an audit will likely cost between \$5,000 and \$10,000.

Both fees charged under these regulations and financial review costs are qualifying expenses that are eligible for the 25% tax credit offset. Increases in these costs will likely lead to a decrease in the value of tax credits to applicants but are unlikely to be of a magnitude that applying for tax credits under this program would cost more than the value received. Because this is a voluntary program, individuals whose costs for applying outweigh benefits would be expected to refrain from taking part in the program.

Businesses and Entities Affected. All historic property owners who apply for tax credits under this program will be affected by these proposed regulations. DHR reports that they have received an average of 248 applications per year for new historic rehabilitation projects over the last five years.

Localities Particularly Affected. No locality will be particularly affected by this proposed regulatory action.

Projected Impact on Employment. These proposed regulations will likely lead to a slight increase in the number of financial review projects completed by CPAs in the Commonwealth.

Effects on the Use and Value of Private Property. To the extent that the availability of tax credits encourages property owners to rehabilitate their properties, the value of those

properties will likely increase. Increases in the costs of applying for tax credits may slightly dampen incentives to participate in this tax credit program.

Small Businesses: Costs and Other Effects. Small business property owners who choose to participate in this program will be subject to increased fees and financial reporting costs.

Small Businesses: Alternative Method that Minimizes Adverse Impact. There are likely no alternate methods that would both meet DHR's goals and further minimize costs for affected entities.

Real Estate Development Costs. This regulatory action will likely increase real estate development costs for individuals who choose to apply for tax credits through this program.

Legal Mandate. The Department of Planning and Budget (DPB) has analyzed the economic impact of this proposed regulation in accordance with § 2.2-4007.04 of the Administrative Process Act and Executive Order Number 14 (10). Section 2.2-4007.04 requires that such economic impact analyses include, but need not be limited to, the projected number of businesses or other entities to whom the regulation would apply, the identity of any localities and types of businesses or other entities particularly affected, the projected number of persons and employment positions to be affected, the projected costs to affected businesses or entities to implement or comply with the regulation, and the impact on the use and value of private property. Further, if the proposed regulation has adverse effect on small businesses, § 2.2-4007.04 requires that such economic impact analyses include (i) an identification and estimate of the number of small businesses subject to the regulation; (ii) the projected reporting, recordkeeping, and other administrative costs required for small businesses to comply with the regulation, including the type of professional skills necessary for preparing required reports and other documents; (iii) a statement of the probable effect of the regulation on affected small businesses; and (iv) a description of any less intrusive or less costly alternative methods of achieving the purpose of the regulation. The analysis presented above represents DPB's best estimate of these economic impacts.

<u>Agency's Response to Economic Impact Analysis:</u> The Department of Historic Resources concurs with the results of the economic impact analysis.

Summary:

The amendments to the regulations governing historic property rehabilitation tax credits (i) make numerous clarifying changes; (ii) revise the fee structure and increase fees charged by the department for reviewing rehabilitation certification requests; (iii) require review by a certified public account of rehabilitation expenses for all projects, including projects with expenses less than \$100,000; and (iv) change the eligibility date for the tax credit for incurred rehabilitation expenses from January 1, 1997, and later to January 1, 2003, and later.

17VAC10-30-10. Definitions.

The following words and terms when used in this regulation shall have the following meanings unless the context clearly indicates otherwise:

"Certified historic structure" means a building listed on the Virginia Landmarks Register, or certified by the Director of the Virginia Department of Historic Resources as contributing to the historic significance of a historic district that is listed on the Virginia Landmarks Register, or certified by the Director of the Department of Historic Resources as meeting the criteria for listing on the Virginia Landmarks Register. Portions of buildings, such as single condominium apartment units, are not independently eligible for certification as a certified historic structure. Rowhouses, even with abutting or party walls, are eligible for certification as a certified historic structure.

"Certified rehabilitation" means any rehabilitation of a certified historic structure that is certified by the Department of Historic Resources as consistent with The the Secretary of the Interior's Standards for Rehabilitation (36 CFR Part 67) 67.7).

"Commonwealth" means the Commonwealth of Virginia.

"Completion date" means the date the last eligible rehabilitation expense is incurred or the final certificate of occupancy (if appropriate) is issued.

"Completion year" means the calendar year in which the last eligible rehabilitation expense is incurred or the final certificate of occupancy (if appropriate) is issued.

"Department" means the Virginia Department of Historic Resources.

"Eligible rehabilitation expenses" means expenses <u>as</u> <u>described in 17VAC10-30-110</u> incurred by a taxpayer in the material rehabilitation of a certified historic structure and added to the property's capital account.

"Historic district" means any district listed on the Virginia Landmarks Register by the Historic Resources Board according to the procedures specified in Chapter 22 (§ 10.1-2200 et seq.) of Title 10.1 of the Code of Virginia.

"Inspection" means a visit by an authorized representative of the Department of Historic Resources to a property for the purposes of reviewing and evaluating the significance of the structure and the ongoing or completed rehabilitation work.

"Material rehabilitation" means improvements or reconstruction consistent with The the Secretary of the Interior's Standards for Rehabilitation (36 CFR Part 67) 67.7), the cost of which amounts to at least 50% of the assessed value of the building for local real estate tax purposes for the year prior to the initial expenditure of any rehabilitation expenses, unless the building is an owner-occupied building, in which case the cost shall amount to at least 25% of the assessed value of such building for local real estate tax purposes for the year prior to the initial expenditure of any

rehabilitation expenses. Material rehabilitation does not include enlargement or new construction.

"Owner" means the person, partnership, corporation, public agency, or other entity holding a fee simple interest in a property, or any other person or entity recognized by the Department of Taxation for purposes of the applicable tax benefits.

"Owner-occupied building" means any building, at least 75% of which is used as a personal residence by the owner, or which is available for occupancy by the owner for at least 75% of the year.

"Plan of rehabilitation" means a plan pursuant to which a certified historic structure will be materially rehabilitated.

<u>"Program" means the Virginia Historic Rehabilitation Tax</u> <u>Credit Program.</u>

"Property" means a building and its site, environment, and landscape features.

"Rehabilitation" means the process of returning a building or buildings to a state of utility, through repair or alteration, which that makes possible an efficient use while preserving those portions and features of the building and its site and environment which are significant to its historical, architectural, and cultural values as determined by the Department of Historic Resources.

"Standards for Rehabilitation" means The the Secretary of the Interior's Standards for Rehabilitation (36 CFR Part 67), 67.7) established by the United States U.S. Department of the Interior.

"Start of rehabilitation" means the date upon which the taxpayer applies for the building permit for the work contemplated by the plan of rehabilitation, or the date upon which actual work contemplated by the plan of rehabilitation begins.

"Virginia Landmarks Register" means the list of historic landmarks, buildings, structures, districts, objects, and sites designated by the Virginia Landmarks Board, in accord with the procedures specified in Chapter 22 (§ 10.1-2200 et seq.) of Title 10.1 of the Code of Virginia.

"Work" means improvement, reconstruction, repair, rehabilitation, or any other alteration to a building.

17VAC10-30-20. Introduction to certifications of significance and rehabilitation.

A. Individuals, estates, partnerships, trusts, or corporations may apply for certification of historic significance and certification of rehabilitations.

B. Requests for certifications of historic significance and of rehabilitations shall be made on the Historic Preservation Certification Application forms. Part 1 of the application, Evaluation of Significance, is used to request certification of historic significance. Part 2 of the application, Description of Rehabilitation, is used to request certification of a proposed rehabilitation project. Part 3 of the application, Request for

Certification of Completed Work, is used to request certification of a completed rehabilitation project. If a rehabilitation project is completed before preparing Part 2 of the application, the applicant owner shall prepare and submit Parts 2 and 3 simultaneously.

- C. The Historic Preservation Certification Application forms are available from the Department of Historic Resources, as well as on the department's website at www.dhr.virginia.gov.
- D. The department generally completes reviews of certification requests within 30 days of receiving a complete, adequately documented application. Where adequate information is not provided, the department will notify the applicant owner of the additional information needed to complete the review. The department will adhere to this time period as closely as possible, but it is not mandatory, and the failure to complete a review within the designated period does not waive or alter any certification requirement. Expedited review of projects is available upon request as set forth in 17VAC10-30-80.
- E. Certifications are only given in writing by duly authorized officials of the Department of Historic Resources. Decisions with respect to certifications are made on the basis of the information contained in the application form and other available information.

17VAC10-30-30. Certifications of historic significance.

- A. Any property owner may consult with the Department of Historic Resources to determine whether a property is listed individually on the Virginia Landmarks Register, or whether a property is located within a historic district that is listed on the Virginia Landmarks Register.
- B. Properties listed individually on the Virginia Landmarks Register are certified historic structures. For individually listed properties that contain more than one building or structure, the owner shall prepare Part 1 of the Historic Preservation Certification Application, "Evaluation of Significance," according to the instructions accompanying the application, describe each building and structure present, and provide information, including:
 - 1. Name and mailing address of the owner;
 - 2. Name and address of the property;
 - 3. Current photographs of each building and structure, and its site, showing exterior and interior features and spaces adequate to document the building's or structure's significance;
 - 4. Brief description of the appearance of the building or structure, including alterations, characteristic features, and estimated date or dates of construction;
 - 6. Brief statement of significance, summarizing how the building or structure reflects the recognized historic values of the property;
 - 7. Map showing the location of each building or structure on the property; and

8. Signature of the owner requesting certification.

- C. For properties located in registered historic districts, the applicant shall request that the Department of Historic Resources determine whether the property is of historic significance to the district. The applicant shall prepare Part 1 of the Historic Preservation Certification Application form according to the instructions accompanying the application, including:
 - 1. Name and mailing address of the owner;
 - 2. Name and address of the property;
 - 3. Name of the historic district;
 - 4. Current photographs of the building and its site, showing exterior and interior features and spaces adequate to document the property's significance;
 - 5. Brief description of the appearance of the property, including alterations, characteristic features, and estimated date or dates of construction;
 - 6. Brief statement of significance, summarizing how the property reflects the recognized historic values of the historic district;
 - 7. Map showing the location of the property within the historic district; and
 - 8. Signature of the owner requesting certification.
- D. Properties containing more than one building, where the department determines that the buildings have been functionally related historically to serve an overall purpose, such as a mill complex or a residence and carriage house, will be treated as a single certified historic structure, whether the property is individually listed in the Virginia Landmarks Register or is located within a registered historic district. Buildings that are functionally related historically are those that have functioned together to serve an overall purpose during the property's period of significance. In determining the value of the property under 17VAC10-30-100, each building will be assessed individually. All buildings on the property are not required to be rehabilitated in order for the owner to participate in the program. However, the work at each building for which tax credits are sought must be a material rehabilitation.
- E. Properties within registered historic districts will be evaluated to determine if they contribute to the historic significance of the district by application of the standards set forth in 17VAC10-30-40.
- F. Owners of properties that are not listed on the Virginia Landmarks Register may request a determination from the department as to whether the property meets the criteria for listing on the Virginia Landmarks Register. The department will provide written notification to the applicant owner of determinations of eligibility. Individual properties Wherever appropriate, the Director of the Department of Historic Resources may determine eligibility at his sole discretion. Properties determined by the department to be eligible for

<u>individual</u> listing in the Virginia Landmarks Register are certified historic structures.

- G. Owners of properties that are located in potential historic districts may request preliminary determinations from the department as to whether the potential historic district meets the criteria for listing on the Virginia Landmarks Register. Owners of properties located in districts determined to be eligible for listing may apply for preliminary certification of specified properties, as in 17VAC10-30-40. Applications for preliminary certification of buildings within eligible historic districts must show how the district meets the criteria for listing on the Virginia Landmarks Register, and how the property contributes to the significance of that district, as specified in 17VAC10-30-40. Preliminary certifications will become final, and the properties will become certified historic structures, as of the date of listing the district on the Virginia Landmarks Register. Issuance of preliminary certification does not obligate the department to nominate the potential district. Applicants Owners proceed with rehabilitation projects at their own risk; if the historic district is not listed in on the Virginia Landmarks Register, the preliminary certification will not become final.
- H. Owners of properties that have received preliminary certifications may apply for certification of rehabilitation projects, as specified in 17VAC10-30-50. Final certifications of rehabilitations will be issued only for certified historic structures.
- I. A request for certification of historic significance may be submitted by an applicant who is not the owner of the property in question. In such cases, the applicant shall include a signed statement from the owner acknowledging the request for certification.
- J. The Department of Historic Resources discourages the moving of historic buildings from their original sites. Under certain circumstances the relocation of historic buildings may be part of a historic rehabilitation project that can be certified. Building owners are advised that the relocation of a building that is listed in on the Virginia Landmarks Register may result in removal of the building from the Register. The relocation of a building that has been determined eligible for listing in the Virginia Landmarks Register may result in the loss of its eligibility. The relocation of a historic building into, from, or within a historic district or to or from an individual property listed in on the Virginia Landmarks Register, or that has been found eligible for listing, may result in removal of the district or property from the Register, loss of the eligibility of the district or property, or loss of the moved building's contributing status within the district or as part of the property. For historic rehabilitation projects involving moved buildings, the following procedures apply:
 - 1. When a building is to be moved as part of a historic rehabilitation project for which certification is sought, the owner shall contact the department prior to moving the building, and shall follow procedures specified by the

- department. It is recommended that the owner receive approval of the relocation plan by the department prior to relocation of the building, as improper relocation may result in denial of certification for the project. When a building is moved, every effort should be made to reestablish its historic orientation, immediate setting, and general environment. In certain special cases, when there is adequate documentation about the building before its relocation and about the moving process, it may be possible to certify historic rehabilitation projects involving moved buildings when participation of the department prior to the move did not occur. However, this approach is not recommended, and owners pursue it at their own risk.
- 2. For individual properties and properties in historic districts not listed in the Virginia Landmarks Register or not previously found eligible for listing, prior to the move the owner shall submit Part 1 of the historic rehabilitation application Historic Preservation Certification Application to the department, according to subsections C, F, and G of this section.
- 3. For individual properties and properties in historic districts listed in the Virginia Landmarks Register or found eligible for listing, prior to the move the owner shall submit documentation to the department to determine whether the move is likely to result in the loss of listing or loss of eligibility for listing. Guidance on the type of documentation required can be obtained from the department.
- 4. Following the relocation of the building and its installation on a new site, reevaluation of the building will be necessary <u>prior to rehabilitation</u> to determine whether it can become <u>is</u> a certified historic structure. The owner shall submit Part 1 of the <u>historic rehabilitation application</u> <u>Historic Preservation Certification Application</u> to the department, according to subsections C, F, and G of this section, presenting information about the building in its new location.
- 5. The relocation of a historic building into, from, or within a listed or eligible historic district, or to or from an individually listed or eligible property, may result in alterations to the boundary definitions of the district or property, and will change the inventory of buildings in the district or on the individual property. The applicant owner applying for certification of the historic rehabilitation project involving building relocation will be responsible for amending the district or property information and nomination accordingly, following guidance provided by the department.

17VAC10-30-40. Standards for evaluating significance within registered historic districts.

A. Some properties listed in on the Virginia Landmarks Register, primarily historic districts, are resources whose concentration or continuity possesses greater historical significance than many of their individual component

buildings and structures. These usually are documented as a group rather than individually. Accordingly, this type of documentation is not conclusive for the purposes of this part. The applicant owner shall supplement this documentation using Part 1 of the Historic Preservation Certification Application, providing information on the significance of the specific property, as set forth in 17VAC10-30-30 C.

- B. The Department of Historic Resources evaluates properties located within registered historic districts to determine if they contribute to the historic significance of the district by applying the following standards:
 - 1. A property contributing to the historic significance of a district is one which that by location, design, setting, materials, workmanship, feeling, and association adds to the district's sense of time and place and historical development.
 - 2. A property not contributing to the historic significance of a district is one that does not add to the district's sense of time and place and historical development; or one where the location, design, setting, materials, workmanship, feeling and association have been so altered or have so deteriorated that the overall integrity of the building has been irretrievably lost.
 - 3. Ordinarily buildings that have been built within the past 50 years shall not be considered to contribute to the significance of a district unless a strong justification concerning their historical or architectural merit is given or the historical attributes of the district are considered to be less than 50 years old.
- C. Certifications of significance will be made on the appearance and condition of the property before the beginning of the rehabilitation work.
- D. If a nonhistoric surface material obscures a building's facade, it may be necessary for the owner to remove <u>all or</u> a portion of the surface material before requesting certification so that a determination of significance can be made. After the material has been removed, if the obscured facade has retained substantial historic integrity and the property otherwise contributes to the significance of the historic district, it will be determined to be a certified historic structure.

17VAC10-30-50. Certifications of rehabilitation.

A. Applicants Owners requesting certification of rehabilitation projects shall comply with the procedures listed below described in this section. A fee, described in 17VAC10-30-80, is charged by the Department of Historic Resources for reviewing all proposed, ongoing, and completed rehabilitation work. No certification decisions shall be issued to any applicant owner until the appropriate remittance is received. Applicants Owners may request the department's review before, during, or after completion of a rehabilitation project. Applicants Owners are strongly encouraged to request the department's review before

beginning a rehabilitation project. Though owners may begin work prior to review by the department, the department cannot guarantee in any way that such work will be certified for tax credits. Such work is undertaken at the risk of the owner.

- 1. To request review of a rehabilitation project, the project applicant owner shall submit Part 2 of the Historic Preservation Certification Application form, "Description of Rehabilitation," according to the instructions accompanying the application. Documentation, including photographs adequate to document the appearance of the structure, both on the interior and the exterior, and its site and environment before rehabilitation, shall accompany the application. Other documentation, including plans, specifications, and surveys, renderings, and sight-line studies, may be required to evaluate eertain rehabilitation projects. In the event of any discrepancy between the application and other supplementary material submitted with it (such as architectural plans, drawings, and specifications), the application shall take precedence. Where If necessary documentation is not provided, and review and evaluation may are not be possible and, a denial of certification will be issued on the basis of lack of information. Because the circumstances of each rehabilitation project are unique, certifications that may have been granted to other rehabilitations are not specifically applicable and may not be relied on by applicants owners as applicable to other projects.
- 2. To request certification of a completed rehabilitation project, the applicant owner shall submit Part 3 of the Historic Preservation Certification Application, "Request for Certification of Completed Work," according to the instructions accompanying the application, and provide documentation that the completed project is consistent with the work described in Part 2. This documentation includes but is not limited to:
 - a. Name and mailing address or addresses of the owner or owners;
 - b. Name and address of the property;
 - c. Photographs Comprehensive photographs of the property showing the completed rehabilitation work, including exterior and interior features and spaces, sufficient to demonstrate that the completed work is consistent with the standards Standards for rehabilitation Rehabilitation;
 - d. Assessed value of the building in the year preceding the start of rehabilitation;
 - e. Final costs attributed to the rehabilitation work (see 17VAC10-30-110 for information on eligible expenses);
 - f. When rehabilitation expenses exceed \$100,000, eertification For a project with (i) rehabilitation expenses of \$250,000 or greater, a report of an audit of the rehabilitation expenses by a an independent certified

- public accountant or equivalent of the actual costs attributed to the rehabilitation of the historic structure in accordance with the department's Rehabilitation Tax Credit Program Certification Requirements, dated January 2015; and or (ii) less than \$250,000 in rehabilitation expenses, an agreed-upon procedures engagement report of the rehabilitation expenses by an independent certified public accountant in accordance with the department's Rehabilitation Tax Credit Program Certification Requirements, dated January 2015;
- g. Signature of the applicant owner. By signing the application, the owner declares that the information stated is correct to the best of the owner's knowledge. Submission of false records or falsification of anything in communications with the department is grounds for denial of the certification of completed work and is punishable under Virginia law or federal law. The department shall submit any relevant information in its possession to the appropriate law-enforcement officials or governmental agencies as necessary; and
- h. At the department's request, any additional information relevant to determining whether a project meets the requirements of the program. This includes the department's right to inspect the property upon reasonable notice.
- B. Each rehabilitation project shall be done according to a plan of rehabilitation. Although the department has not set any formal requirements for a plan of rehabilitation, every plan shall include, at a minimum, the name of the owner of the property, the location of the property, and a description of the proposed, ongoing, or completed rehabilitation project. A plan of rehabilitation must provide the department with sufficient information to determine whether the rehabilitation qualifies for certification. The burden is on the applicant owner to supply sufficient information for the department to make a determination.
- C. A rehabilitation project for certification purposes encompasses all work on the interior and exterior of the certified historic structure or structures and its site and environment, as well as related demolition, new construction or rehabilitation work that may affect the historic qualities, integrity, site, landscape features, and environment of the property.
 - 1. All elements of the rehabilitation project shall be consistent with the standards Standards for rehabilitation Rehabilitation, as set forth in 17VAC10-30-60. Portions of a project that are not in conformance with the standards may not be exempted, and the department may require remediation as a condition to receiving a certification of completed work. In general, an applicant owner undertaking a rehabilitation project will not be held responsible for prior rehabilitation work not part of the current project, as long as it was done in good faith (without intent to circumvent the requirements set forth in

- this chapter or otherwise defraud the Commonwealth) and at least five years prior to submitting an application. Such prior work will not be considered done in good faith if the owner has received historic rehabilitation tax credits under Virginia's program in the past five years. Owners will not be held responsible for work or rehabilitation work that was undertaken by previous owners, as long as the previous owner is not a related party.
- 2. Conformance to with the standards will be determined on the basis of the application documentation and other available information by evaluating, which may include physical inspection of the property by the department, evaluation of the property as it existed before the beginning of the rehabilitation project, and its condition at the completion of the rehabilitation.
- 3. If the legal boundaries of the property change after the owner submits the Part 1 of the Historic Preservation Certification Application, this information must be disclosed to the department in writing. The disclosure must describe the change in the property boundaries and the relationships, if any, between the owner of the property and the owners of adjacent properties. Situations involving a related party between the owner of the property for which rehabilitation tax credits are sought and an owner of adjacent property may require an expanded scope of review by the department.
- D. The department, on receipt of the complete application describing the rehabilitation project, shall determine if the project is consistent with the standards Standards for rehabilitation Rehabilitation. If the project does not meet the standards, the department shall advise the applicant owner of that fact in writing. Where possible, the department will advise the project applicant owner of necessary revisions to meet the standards.
- E. Once a proposed or ongoing project plan of rehabilitation has been approved certified, substantive changes in the work as described in the application shall be brought promptly to the attention of the department by written statement to ensure continued conformance to the standards Standards for Rehabilitation. The owner shall describe the change on the "Continuation/Amendment Sheet" of the Historic Preservation Certification Application and include relevant documentation for evaluation by the department. The department strongly recommends receiving certification of changes before commencing such work. Any work that does not conform to the plan of rehabilitation as certified by the department is at the owner's own risk, as changes that are not consistent with the standards may cause the entire project to be denied certification. After Part 3 of the application has been submitted, only essential corrections to the application may be made. The department may consider amendments to correct information within one year of the issuance of the certification of completed work, if justified.

F. An authorized representative of the department may inspect projects to determine if the work meets the standards Standards for rehabilitation Rehabilitation and is consistent with any information the owner supplied to the department, including whether the actual work completed is consistent with the costs reported. The department reserves the right to make inspections at any time up to three years after completion certification of the completed rehabilitation and to revoke a certification, after giving the applicant owner 30 days to comment on the matter, if it is determined that the rehabilitation project was not undertaken as represented in the application and supporting documentation. If the department discovers a material error of fact or misrepresentation in the information submitted for certification, the owner must address the issue within 60 calendar days of written notice by the department to avoid revocation of certification. The department may investigate any project where it reasonably suspects fraud or misrepresentation, regardless of the time that may have passed since certification of completed rehabilitation. The tax consequences of a revocation of certification will be determined by the Department of Taxation. However, certification shall not be revoked for changes that are determined to have been made following good-faith completion of the project.

17VAC10-30-60. Standards for rehabilitation Rehabilitation.

A. The standards Standards for rehabilitation Rehabilitation are the criteria used to determine if a rehabilitation project qualifies as a certified historic rehabilitation. The intent of the standards is to promote the long-term preservation of a property's significance through the preservation of historic materials and features. The standards pertain to historic buildings of all materials, construction types, sizes, and occupancy and encompass the exterior and the interior of historic buildings. The standards also encompass related landscape features and the building's site and environment, as well as attached, adjacent, or related new construction. To be certified, a rehabilitation project shall be determined by the Department of Historic Resources to be consistent with the historic character of the structure or structures and, where applicable, the district in which it is located.

- B. The standards Standards for rehabilitation Rehabilitation shall be applied to specific rehabilitation projects in a reasonable manner, taking into consideration economic and technical feasibility.
 - 1. A property shall be used for its historic purpose or be placed in a new use that requires minimal change to the defining characteristics of the building and its site and environment.
 - 2. The historic character of a property shall be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided.

- 3. Each property shall be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or architectural elements from other buildings, shall not be undertaken.
- 4. Most properties change over time; those changes that have acquired historic significance in their own right shall be retained and preserved.
- 5. Distinctive features, finishes, and construction techniques or examples of craftsmanship that characterize a historic property shall be preserved.
- 6. Deteriorated architectural features shall be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature should match the old in design, color, texture, and other visual qualities and, where possible, materials. Replacement of missing architectural features must be substantiated by documentary, physical, or pictorial evidence.
- 7. Chemical or physical treatments, such as sandblasting, that cause damage to historic materials shall not be used. The surface cleaning of structures, if appropriate, shall be undertaken using the gentlest means possible.
- 8. Significant archeological resources affected by a project shall be protected and preserved. If these resources must be disturbed, mitigation measures shall be undertaken.
- 9. New additions, exterior alterations, or related new construction shall not destroy historic materials that characterize the property. The new work shall be differentiated from the old and shall be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment.
- 10. New additions and adjacent or related new construction shall be undertaken in such a manner that if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired.
- C. The quality of materials, craftsmanship, and related new construction in a rehabilitation project should be commensurate with the quality of materials, craftsmanship, and design of the historic structure in question. Certain treatments, if improperly applied, or certain materials by their physical properties, may cause or accelerate physical deterioration of historic buildings. Inappropriate rehabilitation measures include, but are not limited to: improper masonry repointing techniques; improper exterior masonry cleaning methods; improper introduction of insulation where damage to historic fabric would result; and incompatible additions and new construction on historic properties. In almost all situations, these measures and treatments will result in denial of certification.
- D. In certain limited cases, it may be necessary to dismantle and rebuild portions of a certified historic structure to stabilize and repair weakened structural members and

systems. In these cases, the Department of Historic Resources will consider this extreme intervention as part of a certified historic rehabilitation if:

- 1. The necessity for dismantling is justified in supporting documentation;
- 2. Significant architectural features and overall design are retained; and
- 3. Adequate historic materials are retained to maintain the architectural and historic integrity of the overall structure.
- E. The qualities of a property and its environment which that qualify it as a certified historic structure are determined taking into account all available information, including information derived from the physical and architectural attributes of the building; these determinations are not limited to information contained in the Virginia Landmarks Register nomination reports.

17VAC10-30-70. Appeals.

- A. A project applicant owner may appeal any denial of certification. A request for an appeal shall be made in writing to the Director of the Department of Historic Resources, 2801 Kensington Avenue, Richmond, Virginia 23221, within 60 days of receipt of the decision that is the subject of the appeal. It is not necessary for the applicant owner to present arguments for overturning a decision within this 60-day period. The applicant owner may request an opportunity to meet with the director, but all information that the applicant owner wishes the director to consider shall be in writing. The director shall consider the record of the decision in question, any further written submissions by the applicant owner, and other available information, and may consult with experts or others as appropriate. The director shall provide the applicant owner a written decision as promptly as circumstances permit. The appeal process is an administrative review of decisions made by the department; it is not an adjudicative proceeding.
- B. In considering appeals, the director may take into account new information not previously available or submitted; alleged errors in professional judgment; or alleged prejudicial procedural errors. The director's decision may:
 - 1. Reverse the appealed decision;
 - 2. Affirm the appealed decision; or
 - 3. Resubmit the matter to the department program staff for further consideration.
- C. The decision of the director shall be the final administrative decision on the appeal. No person shall be considered to have exhausted his administrative remedies with respect to the certifications or decisions described in this part until the director has issued a final administrative decision in response to this section.

17VAC10-30-80. Fees for processing rehabilitation certification requests.

A. Fees are charged for reviewing rehabilitation certification requests in accordance with the following schedule:

Rehabilitation Costs	Part 2 Review Fee	Part 3 Review Fee
Less than \$50,000 \$100,000	Fee waived \$250	\$100 <u>\$250</u>
\$50,000 \$100,000 - \$99,999 \$249,999	\$250 <u>\$500</u>	\$250 <u>\$500</u>
\$100,000 \$250,000 - \$499,999	\$4 00 \$1,000	\$4 00 \$1,000
\$500,000 - \$999,999	\$750 <u>\$2,000</u>	\$750 <u>\$2,000</u>
\$1,000,000 - \$1,999,999	\$4,000	\$4,000
\$2,000,000 - \$3,499,999	\$5,000	\$5,000
\$3,500,000 - \$4,999,999	\$7,000	\$7,000
\$1 million or more \$5,000,000 and above	\$1,500 \$8,000	\$1,500 \$8,000

B. The department generally completes reviews of certification requests within 30 days of receiving a complete, adequately documented application. Upon request, if the current workload at the department permits, the department will may review complete, fully documented applications within five business days. The director reserves the right to refuse requests for expedited review if the current workload at the department so warrants. Fees are charged for such expedited review in accordance with the following schedule:

Rehabilitation Costs	Expedited Review Fee
Less than \$50,000 \$100,000	\$100 <u>\$500</u>
\$50,000 <u>\$100,000</u> - \$99,999 <u>\$249,999</u>	\$250 <u>\$1,000</u>
\$100,000 <u>\$250,000</u> - \$499,999	\$400 <u>\$2,000</u>
\$500,000 - \$999,999	\$750 <u>\$4,000</u>
<u>\$1,000,000 - \$1,999,999</u>	<u>\$8,000</u>
<u>\$2,000,000 - \$3,499,999</u>	<u>\$10,000</u>
<u>\$3,500,000 - \$4,999,999</u>	<u>\$14,000</u>
\$1 million or more \$5,000,000 and above	\$1,500 <u>\$16,000</u>

C. Payment of fees for review of Parts 2 and 3 shall be made to the Department of Historic Resources when the applications are submitted. Certification decisions will not be issued until the appropriate remittances are received. <u>This includes all additional fees required if the project expenses exceed the cost estimate stated in the Part 2.</u> Payment of fees for expedited review shall be submitted with the request for expedited review, and review shall not commence until such fee is paid. Fees are nonrefundable, except in cases where the request for expedited review is refused.

D. In general, each rehabilitation of a separate certified historic structure will be considered a separate project for purposes of computing the size of the fee. <u>Phased projects incur separate Part 3 fees for each phase.</u>

17VAC10-30-90. Forms.

Applications To apply for certifications of buildings and rehabilitation projects are made with the, an owner shall complete and submit the Historic Preservation Certification Application, prepared by to the Department of Historic Resources. The forms are available from the department and on the department's website.

17VAC10-30-100. Definition of rehabilitation project.

A. A certified historic structure shall be treated as having been materially rehabilitated only if the eligible rehabilitation expenses (as defined in 17VAC10-30-110) incurred in a 24-month period selected by the taxpayer ending with or within the completion year shall equal or exceed 50% of the assessed value of the building for local real estate tax purposes, determined for the year before the start of rehabilitation, unless the building is an owner-occupied building, in which case the eligible rehabilitation expenses shall amount to at least 25% of the assessed value of the building for local real estate tax purposes for the year before the start of rehabilitation.

B. In the case of any rehabilitation that may reasonably be expected to be completed in phases set forth in a plan of rehabilitation submitted contemporaneously with the Description of Rehabilitation, subsection A of this section shall be applied by substituting "60-month period" for "24month period." A rehabilitation may reasonably be expected to be completed in phases if it consists of two or more distinct stages of development. The department may review each phase as it is presented, but a phased project cannot be designated a certified rehabilitation until all of the phases are completed. The applicant owner may elect to claim the credit allowable for each completed phase of a phased project, upon receipt from the department of written approval certification of the work completed for each phase. Any such initial claims will be contingent upon final certification of the completed project.

C. In the case of properties containing more than one building for which tax credits are sought, the work at each building must constitute a material rehabilitation, according to subsection A of this section. The review fees will be charged according to the overall cost of the project. Buildings that are physically connected but that were not historically or functionally related, such as a duplex or rowhouse, shall

qualify as separate certified historic structures, regardless of ownership, for the purposes of this program.

17VAC10-30-110. Eligible rehabilitation expenses.

- A. Eligible rehabilitation expenses are those expenses incurred by a taxpayer in connection with a plan of rehabilitation on or after January 1, 1997 2003, in the material rehabilitation of a certified historic structure and added to the property's capital account.
- B. Once the material rehabilitation test is met, the eligible rehabilitation expenses upon which a credit can be claimed include:
 - 1. Expenses incurred prior to the start of the 24-month measuring period as defined in 17VAC10-30-100 A, provided that the expenses were incurred in connection with the rehabilitation process plan that resulted in the material rehabilitation of the building;
 - 2. Within the measuring period as defined in 17VAC10-30-100 A; and
 - 3. After the end of the measuring period as defined in 17VAC10-30-100 A but prior to the completion of the project.
- C. Amounts are properly chargeable to the capital account if they are properly includable in computing the basis of real property under U.S. Department of the Treasury, Internal Revenue Code, Reg. § 26 CFR 1.46-3(c). Amounts treated as an expense and deducted in the year paid or incurred or amounts that are otherwise not added to the basis of real property do not qualify. Amounts incurred for historic preservation consultant fees, architectural and engineering fees, certain site fees, and other construction-related costs that are added to the basis of real property satisfy this requirement.
- D. Certain expenses are not eligible rehabilitation expenses. These expenses are:
 - 1. The cost of acquiring a building, any interest in a building (including a leasehold interest) or land. Interest incurred on a construction loan the proceeds of which are used for eligible rehabilitation expenditures (and which is added to the basis of the property) is not treated as a cost of acquisition.
 - 2. Landscaping.
 - 3. Site work, including the construction or repair of parking lots, sidewalks, curbing, walls, fencing, pools, patios, etc., except that the cost of certain site work that is part of, and integral to, the building's systems, such as plumbing, mechanical, and electrical, may qualify.
 - <u>4.</u> Any expense attributable to an enlargement of a building.
 - a. A building is enlarged to the extent that the total volume of the building is increased. An increase in floor space resulting from interior remodeling is not considered an enlargement.

b. If expenditures only partially qualify as eligible rehabilitation expenditures because some of the expenditures are attributable to the enlargement of the building, the expenditures must be apportioned between the original portion of the building and the enlargement. The expenditures must be specifically allocated between the original portion of the building and the enlargement to the extent possible. If it is not possible to make a specific allocation of the expenditures, the expenditures must be allocated to each portion on a reasonable basis. The determination of a reasonable basis for an allocation depends on factors such as the type of improvement and how the improvement relates functionally to the building.

Example: A historic rehabilitation project includes a new rear wing. A new air-conditioning system and a new roof are installed on the building. A reasonable basis for allocating the expenditures among the two portions generally would be the volume of the historic building (excluding the new wing), served by the air-conditioning system or the roof, relative to the volume of the new wing that is served by the air-conditioning system and the roof.

- 3. 5. Any expense attributable to the rehabilitation of a certified historic structure, or a building located in a registered historic district, which that is not a certified rehabilitation.
- 4. 6. Any expense incurred before January 1, 1997 2003.
- 5. 7. Any expense not incurred by a taxpayer, including expenses incurred by a local government or any agency thereof, or by any agency, unit, or instrumentality of the Commonwealth.
- 6. <u>8.</u> Any rehabilitation expense financed, directly or indirectly, by an obligation of the Commonwealth of Virginia.
- 9. Any expense paid with insurance or indemnity payments received as a result of a property casualty loss of the property being rehabilitated.
- 10. Any expense related to personal property or nonessential equipment. Examples include, but are not limited to, removable cabinets, appliances, trade fixtures, and electronic and technology equipment that is not essential for the rehabilitation and basic function of the building, regardless of the specific use of the building.
- 11. All costs associated with syndication of the tax credits. This includes legal and other business fees related to syndication.
- 12. Deferred fees or unpaid costs for which there is no charge to a capital account with a corresponding recorded entry to a liability account and either proof of subsequent payment thereof or appropriate documentation evidencing the liability.
- E. The taxpayer may take into account eligible rehabilitation expenses created in connection with the same plan of rehabilitation by any other entity with an interest in the

building. Where eligible rehabilitation expenses are created with respect to a building by an entity other than the taxpayer and the taxpayer acquires the building or a portion of the building to which the expenses were allocable, the taxpayer acquiring such property will be treated as having incurred the eligible rehabilitation expenses actually created by the transferor, provided that no credit with respect to such qualified rehabilitation expenses is claimed by anyone other than the taxpayer acquiring the property and that the building has not been placed into service prior to the taxpayer's acquisition of the building.

F. A taxpayer who has incurred eligible rehabilitation expenses may elect to treat a tenant or tenants as having incurred these rehabilitation expenses, provided that the lease is for a term of at least five years. This election shall be made on the application for the certification of rehabilitation. For purposes of testing whether a rehabilitation is material, all eligible rehabilitation expenses will be counted. In the event the election is made to treat multiple tenants as having incurred rehabilitation expenses, the allocation of eligible rehabilitation expenses to these tenants shall be made in accordance with the relative square footage occupied by the tenants or the relative amounts of eligible rehabilitation expenses spent in connection with each tenant's space. Eligible rehabilitation expenses that are not readily allocable by specific space shall be allocated in a manner consistent with the allocation method chosen.

17VAC10-30-120. Qualification for credit.

Credits against tax shall be available for the material rehabilitation of a certified historic structure. Material rehabilitation means improvements or reconstruction consistent with the standards Standards for rehabilitation Rehabilitation, the cost of which amounts to at least 50% of the assessed value of the buildings for local real estate tax purposes for the year before the start of rehabilitation, unless the building is an owner-occupied building, in which case the cost shall amount to at least 25% of the assessed value of such building for local real estate tax purposes for the year before such rehabilitation expenses were incurred. An owneroccupied building is any building, at least 75% of which is used as a personal residence by the owner, or which is available for occupancy by the owner for at least 75% of the year. The assessed value of the building for local real estate tax purposes does not include any assessment for land. The determination of whether a rehabilitation has been material shall be made at the entity level, not at the partner or shareholder level.

Ex. Example 1. Certified historic structure has a 1996 2012 tax assessment of \$20,000 for the land, \$80,000 for the building; and a 1997 2013 assessment of \$20,000 for the land, \$70,000 for the building. Taxpayer submits a plan of rehabilitation on December 1, 1997 2013. Taxpayer applies for a building permit for work to be done in accordance with the plan of rehabilitation on December 15, 1997 2013.

Taxpayer incurs eligible rehabilitation expenses in the amount of \$37,500 pursuant to the plan of rehabilitation. Rehabilitation is completed in 1999 2015. Taxpayer is not entitled to a tax credit because taxpayer's eligible rehabilitation expenses (\$37,500) do not exceed 50% of the assessed value of the building in the year prior to the start of rehabilitation (\$40,000).

Ex. Example 2. Same facts as above, except taxpayer applies for the building permit on January 2, 1998 2014. Eligible rehabilitation expenses (\$37,500) exceed 50% of the assessed value of the building in the year prior to the start of rehabilitation (\$35,000). Therefore, taxpayer is entitled to a credit of 20% (for completion in 1999 2015) of \$37,500.

17VAC10-30-130. Amount and timing of credit.

A. The amount of the credit shall be determined by multiplying the total amount of eligible rehabilitation expenses incurred in connection with the plan of rehabilitation by 25%. Eligible rehabilitation expenses may include expenses in connection with the rehabilitation that were incurred prior to the start of rehabilitation. Further, eligible rehabilitation expenses may include expenses incurred prior to completion of a formal plan of rehabilitation provided the expenses were incurred in connection with the rehabilitation that was completed.

B. Complete, adequately documented Historic Preservation Certification Application forms must be received by the department within one year after the final expense is incurred or the final certificate of occupancy (if appropriate) is issued completion date. Properties that do not meet the criteria for individual listing on the Virginia Landmarks Register must be located in registered historic districts by such date. Taxpayers are cautioned, however, that if Parts 1 and 2 of the Historic Preservation Certification Application forms are not submitted prior to beginning work on the rehabilitation, they proceed with the project at the risk that the building or the rehabilitation project will not be certified.

17VAC10-30-140. Entitlement to credit.

A. Effective for taxable years beginning on and after January 1, 1997, any individual, trust or estate, or corporation incurring eligible expenses in the rehabilitation of a certified historic structure shall be entitled to a credit against tax in the manner and amount set forth in these regulations. Credits granted to a partnership, electing small business corporation (S corporation), or limited liability company shall be passed through to the partners or shareholders, respectively. Credits granted to a partnership, electing small business corporation (S corporation), or limited liability company shall be allocated among partners or shareholders, respectively, either in proportion to their ownership interest in such entity or as the partners or shareholders mutually agree.

The members, partners or shareholders at the end of the taxable year in which there is an entitlement to credit shall be allocated the state rehabilitation tax credits for which a project is certified.

B. The Department of Historic Resources shall certify the amount of eligible rehabilitation expenses. The certification shall consist of a letter signed by an authorized representative of the department confirming that the rehabilitated property is a certified historic structure and that the rehabilitation is a certified historic rehabilitation, and shall specify the amount of eligible rehabilitation expenses, based on the Request for Certification of Completed Work form. The department's certification shall make reference to any partnership, S corporation, or limited liability company allocation document, as defined in subsection A of this section. A person with an interest in the property who materially rehabilitates a certified historic structure may apply for a certificate of material rehabilitation. Persons with an interest in the property include those individuals or entities that have a possessory interest in the property. The application for issuance certification of a certificate project shall set forth the name of the individual or entity that will utilize entitled to the credit on its tax return. The taxpayer shall attach the certificate letter of certification to the Virginia tax return on which the credit is claimed.

C. If the amount of the credit exceeds the taxpayer's tax liability for such taxable year, the amount that exceeds the tax liability may be carried over for credit against the income taxes of such taxpayer for the next ten 10 taxable years or until the full credit is used, whichever occurs first. For purposes of passthrough pass-through entities (e.g., general and limited partnerships, limited liability companies, S corporations) this paragraph shall be applied to the partners, members or shareholders, as applicable.

17VAC10-30-150. Transition rules for projects begun before 1997 2003.

A. Rehabilitation expenses incurred before January 1, 1997 2003, do not qualify for a rehabilitation tax credit and will not be considered part of the rehabilitation project for which owner seeks tax credits.

B. Applicants whose rehabilitation projects commenced before 1997, but were not completed until after January 1, 1997, may apply for certification of their rehabilitation work, in accordance with the provisions of 17VAC10 30 20, 17VAC10 30 30, and 17VAC10 30 50. In these cases, the tax credit is calculated as the appropriate percentage of expenses incurred on or after January 1, 1997.

C. For projects begun before January 1, 1997, the material rehabilitation test shall be determined by the entire project, rather than by those parts of the work completed on or after January 1, 1997.

17VAC10-30-160. Coordination with the federal certified historic rehabilitation program.

A. Certifications of properties and rehabilitation projects by the National Park Service, U.S. Department of the Interior, under Federal Law 36 CFR Part 67, are not equivalent to certification of properties and rehabilitation projects by the Virginia Department of Historic Resources under § 58.1-

339.2 of the Code of Virginia, except as provided in subsection B of this section. Taxpayers are cautioned that deadlines and requirements for certifications under these state regulations may differ from deadlines and requirements for certifications under the federal program.

B. Certifications of historic significance of properties (Part 1, Historic Preservation Certification Application) by the National Park Service, U.S. Department of the Interior, dated after January 1, 1995, shall be accepted as equivalent of certification of historic significance by the Virginia Department of Historic Resources under the provisions of 17VAC10-30-20.

<u>C.</u> Approval under one program does not necessarily mean the project will be approved by the other.

<u>NOTICE</u>: The following forms used in administering the regulation were filed by the agency. The forms are not being published; however, online users of this issue of the Virginia Register of Regulations may click on the name of a form with a hyperlink to access it. The forms are also available from the agency contact or may be viewed at the Office of the Registrar of Regulations, General Assembly Building, 2nd Floor, Richmond, Virginia 23219.

FORMS (17VAC10-30)

State Historic Rehabilitation Tax Credit Program Historic Preservation Certification Application Part 1 Evaluation of Significance, DHR Form TC 1 (rev. 8/02).

State Historic Rehabilitation Tax Credit Program Historic Preservation Certification Application Part 2 Description of Rehabilitation, DHR Form TC 2 (rev. 8/02).

State Historic Rehabilitation Tax Credit Program Historic Preservation Certification Application Part 3 Request for Certification of Completed Work, DHR Form TC 3 (rev. 8/02).

State Historic Rehabilitation Tax Credit Program Historic Preservation Certification Application Billing Statement, DHR Form TC 4 (rev. 10/03).

Disclosure of Ownership - State Historic Rehabilitation Tax Credit Program Historic Preservation Certification Application, DHR Form TC 5 (rev. 8/02).

<u>State Historic Rehabilitation Tax Credit Program Historic</u> <u>Preservation Certification Application Part 1 - Evaluation of</u> <u>Significance, DHR Form TC-1 (rev. 8/13)</u>

<u>State Historic Rehabilitation Tax Credit Program Historic</u> <u>Preservation Certification Application Part 2 - Description of</u> <u>Rehabilitation, DHR Form TC-2 (rev. 8/13)</u>

<u>State Historic Rehabilitation Tax Credit Program Historic Preservation Certification Application Part 3 - Request for Certification of Completed Work, DHR Form TC-3 (rev. 8/13)</u>

<u>Continuation/Amendment</u> <u>Sheet - Historic Preservation</u> <u>Certification Application, DHR Form TC-4 (rev. 1/15)</u> <u>State Historic Rehabilitation Tax Credit Program Historic Preservation Certification Application Billing Statement,</u> DHR Form TC-5 (rev. 1/15)

<u>Disclosure of Ownership - State Historic Rehabilitation Tax</u>
<u>Credit Program Historic Preservation Certification</u>
Application, DHR Form TC-6 (rev. 1/15)

DOCUMENTS INCORPORATED BY REFERENCE (17VAC10-30)

Rehabilitation Tax Credit Program Certification Requirements, Virginia Department of Historic Resources, January 2015

VA.R. Doc. No. R13-3494; Filed January 20, 2015, 1:04 p.m.

TITLE 18. PROFESSIONAL AND OCCUPATIONAL LICENSING

VIRGINIA BOARD FOR ASBESTOS, LEAD, AND HOME INSPECTORS

Proposed Regulation

<u>Title of Regulation:</u> 18VAC15-30. Virginia Lead-Based Paint Activities Regulations (amending 18VAC15-30-161).

<u>Statutory Authority:</u> §§ 54.1-201 and 54.1-501 of the Code of Virginia.

Public Hearing Information:

February 26, 2015 - 10 a.m. - Department of Professional and Occupational Regulation, 9960 Mayland Drive, Suite 200, Richmond, Virginia 23233

Public Comment Deadline: April 10, 2015.

Agency Contact: Trisha Henshaw, Executive Director, Virginia Board for Asbestos, Lead, and Home Inspectors, 9960 Mayland Drive, Suite 400, Richmond, VA 23233, telephone (804) 367-8595, FAX (866) 350-5354, or email alhi@dpor.virginia.gov.

<u>Basis:</u> Section 54.1-201 of the Code of Virginia authorizes the Virginia Board for Asbestos, Lead, and Home Inspectors to promulgate regulations in accordance with the Administrative Process Act (§ 2.2-4000 et seq. of the Code of Virginia) necessary to assure continued competency, prevent deceptive or misleading practices by practitioners, and effectively administer the regulatory system administered by the regulatory board.

Section 54.1-501 of the Code of Virginia authorizes the board to promulgate regulations for the licensure of lead professionals and firms, approval of accredited lead training programs, and approval of criteria for accredited lead training programs.

<u>Purpose:</u> The ability to competitively negotiate and procure contracts for the examination administration of the lead program is a critical component of the application process.

The current examination cap of \$75 has been in place since October 1, 1995, the original effective date of the regulations. Due in part to the small number of candidates for lead examinations (approximately 80 per year), the increased security requirements necessary to ensure examination content is not compromised, the ability to procure services that allow maximum offerings (geographic and multi-day availability), and overall changes in the economy, the costs associated with administering examinations have increased. The current examination cap inhibits the board's ability to competitively negotiate examination services because some vendors will not submit proposals due to the extensive limitation of the examination cap and recent proposal submittals indicate the current examination cap is unrealistic. Third-party vendors who develop and administer examinations cannot provide an effective, secure examination for \$75. The Department of Professional and Occupational Regulation strictly adheres to the competitive negotiation process in the Virginia Public Procurement Act (§ 2.2-4300 et seq. of the Code of Virginia), and the department negotiates to ensure fees remain reasonable for candidates while ensuring all examination administration needs are met. Increasing the examination cap is essential to cover the current cost of the examination as well as to ensure receiving proposals from vendors in the future for these services.

The most recent examination services procurement process affirms the necessity to make this change based on the above factors as no proposals could comply with the current examination cap. There is a separate regulatory action in process to adjust the board's fees pursuant to § 54.1-113 of the Code of Virginia to ensure that revenues are sufficient but not excessive to cover its ongoing operating expenses. Without the proposed fee increases, the board will incur a deficit by the end of the 2012-2014 biennium and the department will not collect adequate revenue to pay for operations. The additional examination costs the board will need to absorb due to the limitation of the examination fee cap will further compound the board's financial position.

The purpose of the lead examination is to ensure minimum competency of those who perform lead abatement activities, which is critical to reducing the risk of lead exposure to the public, particularly children. In order to establish minimum competency of individuals and businesses performing abatement activities and protect the public health, safety, and welfare, a valid, comprehensive, psychometrically sound examination is essential.

<u>Substance:</u> The board proposes amending 18VAC15-30-161 C to increase the maximum cost of the examination to the candidate to reflect the \$150 maximum amount of the current exam vendor contract. All future examination service contracts shall continue to be established through the competitive negotiation process pursuant to the Virginia Public Procurement Act (§ 2.2-4300 et seq. of the Code of Virginia). Examination candidates will be required to pay for the actual cost of the examination, not to exceed the

maximum of \$150, which has been competitively negotiated and bargained for by the department and is subject to contracted charges.

<u>Issues:</u> The advantage of this action to the board's regulants, that is, the public, is that there is less risk of a significant increase in application or renewal fees due to the board having to absorb the additional cost of each examination. Without raising the exam cap, the board would be forced to increase applications and other licensing fees in order to ensure that its revenue is sufficient to cover its expenses in accordance with the Callahan Act (§ 54.1-113 of the Code of Virginia), which must ultimately be paid by the board's regulants. There are no disadvantages to the public or the agency.

<u>Department of Planning and Budget's Economic Impact Analysis:</u>

Summary of the Proposed Amendments to Regulation. The proposed change will allow the Board for Asbestos, Lead and Home Inspectors (the Board) to charge more than \$75 to a candidate taking the lead licensure examination.

Result of Analysis. The benefits likely exceed the costs for all proposed changes.

Estimated Economic Impact. Current regulation contains a \$75 exam fee cap that prevents the Board from passing on the actual cost of the lead licensure test to candidates taking the exam. According to the Department of Professional Occupational Regulation (DPOR), this cap has been in place since 1995 and is no longer reflective of the actual costs of the test. In 2013, DPOR was unable to procure a third party vendor to administer the test for \$75 or less. In fact, DPOR contracted with a vendor after a competitive negotiation process in accordance with the Virginia Public Procurement Act for \$150 per test. Since the Board cannot collect more than \$75 from candidates, the Board has been paying for the remaining \$75 from its own budget. Without the proposed removal of the cap, the Board will continue to incur deficits from administering its licensure examinations. In the first three months of 2014, the Board administered 15 lead examinations. For these examinations, the Board paid \$2,250 to the vendor but collected only \$1,125 from candidates, resulting in a deficit of \$1,125 from this activity.

The Board proposes to remove the current \$75 exam fee cap so as to be able to adjust the exam fee in accordance with the competitively negotiated contract. The proposed language would allow the Board, for example, to charge \$150 to a candidate currently taking the exam.

The proposed change is expected to help the Board collect the revenues it needs to support the administration of its exam while imposing additional costs on individuals taking the exam. In addition, since this change will allow the Board to pass on the true exam costs to candidates who are taking the exam as opposed to using its revenues from elsewhere to finance this particular activity, an improvement in the allocative efficiency of the Board's resources may be

expected. For example, an exam fee less than the actual cost is likely to result in more candidates taking the exam than the optimal number of candidates. Conversely, if the Board is using, let's say, renewal fees to finance its deficiency from the initial licensure exam, fewer than the optimal number of renewal applications would be expected. In short, the proposed change would allow the Board to charge fees for services commensurate with their true costs and achieve a more efficient allocation of the Board's resources.

Businesses and Entities Affected. The proposed change will primarily affect the Board and candidates taking the lead licensure exam. Approximately, 80 individuals take the test per year.

Localities Particularly Affected. The regulation is not expected to affect any locality more than others.

Projected Impact on Employment. While the proposed change will moderately increase costs associated with becoming a lead professional, it is unlikely to significantly affect employment.

Effects on the Use and Value of Private Property. While the proposed change will moderately increase costs associated with becoming a lead professional and have a negative impact on their profitability and asset values, it is unlikely to be significant. Conversely, increased revenues from initial exam candidates would reduce the need to finance the exam cost from other regulants and may have a small positive impact on them

Small Businesses: Costs and Other Effects. Most of the candidates taking the lead exam are expected to be affiliated with small businesses. The cost and other affects on small businesses are the same as discussed above.

Small Businesses: Alternative Method that Minimizes Adverse Impact. There is no known alternative that minimizes the small adverse impact expected.

Real Estate Development Costs. Since the proposed change will moderately increase costs associated with becoming a lead professional, there may be a very small increase in cost of renovating a building with lead paint.

Legal Mandate.

General: The Department of Planning and Budget (DPB) has analyzed the economic impact of this proposed regulation in accordance with § 2.2-4007.04 of the Code of Virginia and Executive Order Number 14 (2010). Section 2.2-4007.04 requires that such economic impact analyses determine the public benefits and costs of the proposed amendments. Further the report should include but not be limited to:

- the projected number of businesses or other entities to whom the proposed regulation would apply,
- the identity of any localities and types of businesses or other entities particularly affected,
- the projected number of persons and employment positions to be affected,

- the projected costs to affected businesses or entities to implement or comply with the regulation, and
- the impact on the use and value of private property.

Small Businesses: If the proposed regulation will have an adverse effect on small businesses, § 2.2-4007.04 requires that such economic impact analyses include:

- an identification and estimate of the number of small businesses subject to the proposed regulation,
- the projected reporting, recordkeeping, and other administrative costs required for small businesses to comply with the proposed regulation, including the type of professional skills necessary for preparing required reports and other documents,
- a statement of the probable effect of the proposed regulation on affected small businesses, and
- a description of any less intrusive or less costly alternative methods of achieving the purpose of the proposed regulation.

Additionally, pursuant to § 2.2-4007.1, if there is a finding that a proposed regulation may have an adverse impact on small business, the Joint Commission on Administrative Rules (JCAR) is notified at the time the proposed regulation is submitted to the Virginia Register of Regulations for publication. This analysis shall represent DPB's best estimate for the purposes of public review and comment on the proposed regulation.

<u>Agency's Response to Economic Impact Analysis:</u> The board concurs with the approval.

Summary:

The proposed amendment increases the maximum fee that can be charged for taking the lead licensure examination from \$75 to \$150.

Part IV Fees

18VAC15-30-161. General fee requirements.

A. All fees are nonrefundable and shall not be prorated. The date on which the fee is received by the department or its agent will determine whether the fee is on time. Checks or money orders shall be made payable to the Treasurer of Virginia.

- B. Fees for approval and renewal of an accredited lead training program and an accredited lead refresher training program shall not be imposed on any state, local government, or nonprofit training program.
- C. The examination fee shall consist of the administration expenses of the board ensuing from the board's examination procedures and contract charges. Examination service contracts shall be established through competitive negotiations in compliance with the Virginia Public Procurement Act (§ 2.2-4300 et seq. of the Code of Virginia). The examination shall not exceed a cost of \$75 \$150 to the candidate.

VA.R. Doc. No. R14-3849; Filed January 7, 2015, 2:05 p.m.

GENERAL NOTICES/ERRATA

DEPARTMENT OF BEHAVIORAL HEALTH AND DEVELOPMENTAL SERVICES

Proposed Renewal of Variances to Regulations to Assure the Rights of Individuals Receiving Services from Providers Licensed, Funded, or Operated by the Department of Behavioral Health and Developmental Services (12VAC35-115)

Notice of action: The Department of Behavioral Health and Developmental Services (DBHDS), in accordance with Part VI - Variances (12VAC35-115-220 et seq.) of the Regulations to Assure the Rights of Individuals Receiving Services from Providers Licensed, Funded, or Operated by the Department of Behavioral Health and Developmental Services (12VAC35-115), hereafter referred to as "Human Rights Regulations," is announcing an opportunity for public comment on the applications for proposed renewal of existing variances to the Human Rights Regulations. The purpose of the regulations is to ensure and protect the legal and human rights of individuals receiving services in facilities or programs operated, licensed, or funded by DBHDS.

Each variance application references the specific part of these regulations to which a variance is needed, the proposed wording of the substitute rule or procedure, and the justification for a variance. Such application also describes time limits and other conditions for duration and the circumstances that will end the applicability of the variance. After considering all available information, including comments, DBHDS intends to submit a written decision deferring, disapproving, modifying, or approving each renewal application. All variances shall be approved for a specific time period. The decision and reasons for variance will be published in a later issue of the Virginia Register of Regulations.

Purpose of notice: DBHDS is seeking comment on the applications for proposed renewal of the following existing variances to the Human Rights Regulations at the DBHDS Virginia Center for Behavioral Health and Rehabilitation (VCBR).

Variance to complaint procedure:

The Human Rights Regulations provide a comprehensive complaint resolution process that includes access to a Local Human Rights Committee and the State Human Rights Committee (SHRC). VCBR Facility Instruction No. 202, Resident Complaint Resolutions, provides the procedures for addressing resident complaints. VCBR's variances to these regulations are reviewed by the SHRC at least annually with VCBR providing reports to the SHRC regarding the variance as requested.

- 12VAC35-115-50 D 3 e (5): Abuse, Neglect, and Exploitation
- 12VAC35-115-60 B 1 d: Services

- 12VAC35-115-140 A 2 and A 4: Complaints and Fair Hearing
- 12VAC35-115-150: General Provisions
- 12VAC35-115-170: Complaint Resolution Process
- 12VAC35-115-180: Local Human Rights Committee Hearing and Review Procedures
- 12VAC35-115-190: Special Procedures for Emergency Hearing by LHRC
- 12VAC35-115-200: Special Procedures for LHRC Reviews Involving Consent and Authorization
- 12VAC35-115-210: State Human Rights Committee Appeals Procedures

Variance for rooms within medical unit with no windows:

VCBR has four bedrooms in its medical unit that do not meet the requirement of this regulation.

• 12VAC35-115-50 C 3 d. Live in a humane, safe, sanitary environment that gives each individual, at a minimum, windows or skylights in all major areas used by individuals.

VCBR maintains established procedures for this variance. VCBR provides a monthly report to the SHRC on how many times rooms with no windows within the medical unit of VCBR are used during the previous month.

Variance for double bunking:

Following the mandate by the General Assembly (Chapter 890 of the 2011 Acts of Assembly), VCBR has implemented double-bunking (two individuals residing in a single room). For this reason, the regulation listed below is not applicable to VCBR.

- 12VAC35-115-50 C 3 a, C 3 e
- a) Reasonable privacy and private storage space
- e) Clean air, free of bad odors

VCBR Facility Instruction No. 124, Resident Housing Assignment, describes how residents' housing assignments are determined and shall substitute for these regulations. VCBR provides a monthly report to the SHRC on how many residents are double-bunked, complaints received by residents regarding double-bunking, and any medication sessions treatment staff hold with roommates to resolve concerns related to double-bunking.

Public comment period: February 9, 2015, through March 9, 2015.

Description of proposal: The proposed variance for renewal consists of a demonstration of compliance with the general requirements of Part VI - Variances (12VAC35-115-220 et seq.) of the Regulations to Assure the Rights of Individuals

General Notices/Errata

Receiving Services from Providers Licensed, Funded, or Operated by the Department of Behavioral Health and Developmental Services (12VAC35-115).

How to comment: DBHDS accepts written comments by email, fax, and postal mail. In order to be considered, comments must include the full name, address, and telephone number of the person commenting and be received by DBHDS by the last day of the comment period. All information received is part of the public record.

To review a proposal: The applications for variance and any supporting documents may be obtained by contacting the DBHDS representative named below.

Contact Information: Deborah Lochart, Director, Office of Human Rights, Department of Behavioral Health and Developmental Services, 1220 East Bank Street, P.O. Box 1797, Richmond, VA 23218-1797, telephone (804) 786-0032, FAX (804) 804-371-2308, or email deb.lochart@dbhds.virginia.gov.

STATE WATER CONTROL BOARD

Proposed Consent Order Bristow Development Corporation

An enforcement action has been proposed for the Bristow Development Corporation for violations of the State Water Control Law and regulations in Prince William County. The State Water Control Board proposes to issue an amended consent order resolving violations at the Bristow Manor Golf Course Wastewater Treatment Plant. A description of the proposed action is available at the Department of Environmental Quality office named below or online at www.deq.virginia.gov. Daniel Burstein will accept comments by email at deq.virginia.gov, FAX at (703) 583-3821, or postal mail at Department of Environmental Quality, Northern Regional Office, 13901 Crown Court, Woodbridge, VA 22193, from February 10, 2015, through March 12, 2015.

VIRGINIA CODE COMMISSION

Notice to State Agencies

Contact Information: *Mailing Address:* Virginia Code Commission, General Assembly Building, 201 North 9th Street, 2nd Floor, Richmond, VA 23219; *Telephone:* Voice (804) 786-3591; FAX (804) 692-0625; *Email:* varegs@dls.virginia.gov.

Meeting Notices: Section 2.2-3707 C of the Code of Virginia requires state agencies to post meeting notices on their websites and on the Commonwealth Calendar at http://www.virginia.gov/connect/commonwealth-calendar.

Cumulative Table of Virginia Administrative Code Sections Adopted, Amended, or Repealed: A table listing regulation sections that have been amended, added, or repealed in the *Virginia Register of Regulations* since the regulations were originally published or last supplemented in the print version of the Virginia Administrative Code is available at http://register.dls.virginia.gov/documents/cumultab.pdf.

Filing Material for Publication in the Virginia Register of Regulations: Agencies use the Regulation Information System (RIS) to file regulations and related items for publication in the Virginia Register of Regulations. The Registrar's office works closely with the Department of Planning and Budget (DPB) to coordinate the system with the Virginia Regulatory Town Hall. RIS and Town Hall complement and enhance one another by sharing pertinent regulatory information.